Properties

Label 4-18e4-1.1-c2e2-0-7
Degree $4$
Conductor $104976$
Sign $1$
Analytic cond. $77.9399$
Root an. cond. $2.97125$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·5-s − 12·7-s + 8·8-s − 4·10-s + 12·11-s − 2·13-s + 24·14-s − 16·16-s + 20·17-s − 24·22-s + 48·23-s + 25·25-s + 4·26-s + 26·29-s − 12·31-s − 40·34-s − 24·35-s + 52·37-s + 16·40-s − 58·41-s − 84·43-s − 96·46-s + 120·47-s + 47·49-s − 50·50-s − 148·53-s + ⋯
L(s)  = 1  − 2-s + 2/5·5-s − 1.71·7-s + 8-s − 2/5·10-s + 1.09·11-s − 0.153·13-s + 12/7·14-s − 16-s + 1.17·17-s − 1.09·22-s + 2.08·23-s + 25-s + 2/13·26-s + 0.896·29-s − 0.387·31-s − 1.17·34-s − 0.685·35-s + 1.40·37-s + 2/5·40-s − 1.41·41-s − 1.95·43-s − 2.08·46-s + 2.55·47-s + 0.959·49-s − 50-s − 2.79·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(104976\)    =    \(2^{4} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(77.9399\)
Root analytic conductor: \(2.97125\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 104976,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.132394220\)
\(L(\frac12)\) \(\approx\) \(1.132394220\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p^{2} T^{2} \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 2 T - 21 T^{2} - 2 p^{2} T^{3} + p^{4} T^{4} \)
7$C_2^2$ \( 1 + 12 T + 97 T^{2} + 12 p^{2} T^{3} + p^{4} T^{4} \)
11$C_2^2$ \( 1 - 12 T + 169 T^{2} - 12 p^{2} T^{3} + p^{4} T^{4} \)
13$C_2^2$ \( 1 + 2 T - 165 T^{2} + 2 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{2} \)
19$C_2^2$ \( 1 - 290 T^{2} + p^{4} T^{4} \)
23$C_2^2$ \( 1 - 48 T + 1297 T^{2} - 48 p^{2} T^{3} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 26 T - 165 T^{2} - 26 p^{2} T^{3} + p^{4} T^{4} \)
31$C_2^2$ \( 1 + 12 T + 1009 T^{2} + 12 p^{2} T^{3} + p^{4} T^{4} \)
37$C_2$ \( ( 1 - 26 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 58 T + 1683 T^{2} + 58 p^{2} T^{3} + p^{4} T^{4} \)
43$C_2^2$ \( 1 + 84 T + 4201 T^{2} + 84 p^{2} T^{3} + p^{4} T^{4} \)
47$C_2^2$ \( 1 - 120 T + 7009 T^{2} - 120 p^{2} T^{3} + p^{4} T^{4} \)
53$C_2$ \( ( 1 + 74 T + p^{2} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 156 T + 11593 T^{2} - 156 p^{2} T^{3} + p^{4} T^{4} \)
61$C_2^2$ \( 1 + 26 T - 3045 T^{2} + 26 p^{2} T^{3} + p^{4} T^{4} \)
67$C_2^2$ \( 1 + 12 T + 4537 T^{2} + 12 p^{2} T^{3} + p^{4} T^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
73$C_2$ \( ( 1 + 46 T + p^{2} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 204 T + 20113 T^{2} - 204 p^{2} T^{3} + p^{4} T^{4} \)
83$C_2^2$ \( 1 - 84 T + 9241 T^{2} - 84 p^{2} T^{3} + p^{4} T^{4} \)
89$C_2$ \( ( 1 - 82 T + p^{2} T^{2} )^{2} \)
97$C_2$ \( ( 1 - 167 T + p^{2} T^{2} )( 1 + 169 T + p^{2} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.61770078535850364858827475962, −10.96806583048774472070768393325, −10.39922169375727536674065875759, −10.21584740401443396056636177427, −9.490535468864704929459242114995, −9.488303515669845521913963377311, −8.942786680086825691965542683136, −8.584395638076591572355753045050, −7.88131312678645962044326944552, −7.30021008437716485784506308365, −6.76003593454566117469580886377, −6.53338437473268137078941147917, −5.92975165906661750374051382539, −4.98763527613806650993030162079, −4.79202279149799065230097647623, −3.57269414473983624257874887053, −3.39063690577401937976608389945, −2.50923674544035722318272662905, −1.30010437368648427485667827724, −0.68914308463710104276843717446, 0.68914308463710104276843717446, 1.30010437368648427485667827724, 2.50923674544035722318272662905, 3.39063690577401937976608389945, 3.57269414473983624257874887053, 4.79202279149799065230097647623, 4.98763527613806650993030162079, 5.92975165906661750374051382539, 6.53338437473268137078941147917, 6.76003593454566117469580886377, 7.30021008437716485784506308365, 7.88131312678645962044326944552, 8.584395638076591572355753045050, 8.942786680086825691965542683136, 9.488303515669845521913963377311, 9.490535468864704929459242114995, 10.21584740401443396056636177427, 10.39922169375727536674065875759, 10.96806583048774472070768393325, 11.61770078535850364858827475962

Graph of the $Z$-function along the critical line