L(s) = 1 | + (1.40 + 1.41i)2-s + (−0.0260 + 3.99i)4-s + 8.06·5-s + 4.50i·7-s + (−5.71 + 5.60i)8-s + (11.3 + 11.4i)10-s − 3.76i·11-s + 7.05·13-s + (−6.39 + 6.35i)14-s + (−15.9 − 0.208i)16-s + 0.517·17-s − 16.4i·19-s + (−0.210 + 32.2i)20-s + (5.33 − 5.30i)22-s + 31.9i·23-s + ⋯ |
L(s) = 1 | + (0.704 + 0.709i)2-s + (−0.00651 + 0.999i)4-s + 1.61·5-s + 0.643i·7-s + (−0.713 + 0.700i)8-s + (1.13 + 1.14i)10-s − 0.342i·11-s + 0.542·13-s + (−0.456 + 0.453i)14-s + (−0.999 − 0.0130i)16-s + 0.0304·17-s − 0.864i·19-s + (−0.0105 + 1.61i)20-s + (0.242 − 0.241i)22-s + 1.39i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00651 - 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.00651 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.12493 + 2.11113i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.12493 + 2.11113i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.40 - 1.41i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 8.06T + 25T^{2} \) |
| 7 | \( 1 - 4.50iT - 49T^{2} \) |
| 11 | \( 1 + 3.76iT - 121T^{2} \) |
| 13 | \( 1 - 7.05T + 169T^{2} \) |
| 17 | \( 1 - 0.517T + 289T^{2} \) |
| 19 | \( 1 + 16.4iT - 361T^{2} \) |
| 23 | \( 1 - 31.9iT - 529T^{2} \) |
| 29 | \( 1 + 18.9T + 841T^{2} \) |
| 31 | \( 1 + 15.1iT - 961T^{2} \) |
| 37 | \( 1 - 0.592T + 1.36e3T^{2} \) |
| 41 | \( 1 + 24.7T + 1.68e3T^{2} \) |
| 43 | \( 1 + 32.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 60.5iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 0.664T + 2.80e3T^{2} \) |
| 59 | \( 1 + 35.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 67.5T + 3.72e3T^{2} \) |
| 67 | \( 1 + 85.9iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 56.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 131.T + 5.32e3T^{2} \) |
| 79 | \( 1 + 146. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 100. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 25.8T + 7.92e3T^{2} \) |
| 97 | \( 1 - 96.5T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.79071145818228405444401452557, −10.80254398036195679160168735169, −9.409399725840365677689207413637, −8.948302306694315931790278559116, −7.64537688563222600412995395425, −6.39121079957120861517789654476, −5.79095681226030837256875175006, −4.97374109173128524611572906204, −3.30802202263756542240535372543, −2.03804463753001354282295997573,
1.31440648896698477934391180333, 2.44580538296053995822145154045, 3.90142136721426197374423654344, 5.13818002842387965371229285850, 6.04817464698830346667533584353, 6.88265232197233144101264305604, 8.632261080846725265688392565358, 9.734435454850885453072519698532, 10.27248739412280841622257829929, 11.00506701395938606859954202893