L(s) = 1 | + (2.18 − 2.18i)3-s + (−9.23 − 6.30i)5-s + (−6.10 − 6.10i)7-s + 17.4i·9-s − 0.518i·11-s + (−15.4 − 15.4i)13-s + (−33.9 + 6.38i)15-s + (−26.4 + 26.4i)17-s + 28.8·19-s − 26.6·21-s + (−139. + 139. i)23-s + (45.4 + 116. i)25-s + (97.0 + 97.0i)27-s − 160. i·29-s + 279. i·31-s + ⋯ |
L(s) = 1 | + (0.420 − 0.420i)3-s + (−0.825 − 0.564i)5-s + (−0.329 − 0.329i)7-s + 0.646i·9-s − 0.0142i·11-s + (−0.328 − 0.328i)13-s + (−0.584 + 0.109i)15-s + (−0.377 + 0.377i)17-s + 0.348·19-s − 0.277·21-s + (−1.26 + 1.26i)23-s + (0.363 + 0.931i)25-s + (0.692 + 0.692i)27-s − 1.02i·29-s + 1.61i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.405 - 0.913i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.405 - 0.913i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.4872026925\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4872026925\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (9.23 + 6.30i)T \) |
good | 3 | \( 1 + (-2.18 + 2.18i)T - 27iT^{2} \) |
| 7 | \( 1 + (6.10 + 6.10i)T + 343iT^{2} \) |
| 11 | \( 1 + 0.518iT - 1.33e3T^{2} \) |
| 13 | \( 1 + (15.4 + 15.4i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + (26.4 - 26.4i)T - 4.91e3iT^{2} \) |
| 19 | \( 1 - 28.8T + 6.85e3T^{2} \) |
| 23 | \( 1 + (139. - 139. i)T - 1.21e4iT^{2} \) |
| 29 | \( 1 + 160. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 279. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (63.2 - 63.2i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 109.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (279. - 279. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + (74.6 + 74.6i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + (-244. - 244. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + 607.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 118.T + 2.26e5T^{2} \) |
| 67 | \( 1 + (9.52 + 9.52i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 860. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (480. + 480. i)T + 3.89e5iT^{2} \) |
| 79 | \( 1 - 880.T + 4.93e5T^{2} \) |
| 83 | \( 1 + (602. - 602. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 1.22e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (1.04e3 - 1.04e3i)T - 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.63854249466240101365629263778, −10.57958007268052080912234639978, −9.580544826279354542133275712217, −8.392820269039741025534675741507, −7.82400429655423945415133755444, −6.93018015235550492189331559063, −5.46761432358791459431359803466, −4.32256637171250957127084868823, −3.13900147828126476632086683026, −1.54441271286045345041384570019,
0.16504988857285309458026749977, 2.50997027765869731723636884903, 3.60048823300896749537347893428, 4.52439774617222629719468338378, 6.13570972602849953537571791668, 7.03777860575557780819810998088, 8.129885709385350121758236450960, 9.072363140466558213130489222928, 9.906930104233925087213617434909, 10.88274733197400202877503341531