L(s) = 1 | + (−0.734 + 0.734i)3-s + (−1.17 − 1.90i)5-s − 1.71·7-s + 1.92i·9-s + (−2.82 + 2.82i)11-s + (−2.59 + 2.59i)13-s + (2.25 + 0.537i)15-s + 1.89i·17-s + (−2.89 − 2.89i)19-s + (1.25 − 1.25i)21-s − 2.00·23-s + (−2.25 + 4.46i)25-s + (−3.61 − 3.61i)27-s + (−6.72 − 6.72i)29-s + 7.11·31-s + ⋯ |
L(s) = 1 | + (−0.423 + 0.423i)3-s + (−0.524 − 0.851i)5-s − 0.648·7-s + 0.640i·9-s + (−0.852 + 0.852i)11-s + (−0.719 + 0.719i)13-s + (0.583 + 0.138i)15-s + 0.460i·17-s + (−0.664 − 0.664i)19-s + (0.274 − 0.274i)21-s − 0.418·23-s + (−0.450 + 0.892i)25-s + (−0.695 − 0.695i)27-s + (−1.24 − 1.24i)29-s + 1.27·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.921 - 0.387i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.921 - 0.387i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0570875 + 0.283051i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0570875 + 0.283051i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1.17 + 1.90i)T \) |
good | 3 | \( 1 + (0.734 - 0.734i)T - 3iT^{2} \) |
| 7 | \( 1 + 1.71T + 7T^{2} \) |
| 11 | \( 1 + (2.82 - 2.82i)T - 11iT^{2} \) |
| 13 | \( 1 + (2.59 - 2.59i)T - 13iT^{2} \) |
| 17 | \( 1 - 1.89iT - 17T^{2} \) |
| 19 | \( 1 + (2.89 + 2.89i)T + 19iT^{2} \) |
| 23 | \( 1 + 2.00T + 23T^{2} \) |
| 29 | \( 1 + (6.72 + 6.72i)T + 29iT^{2} \) |
| 31 | \( 1 - 7.11T + 31T^{2} \) |
| 37 | \( 1 + (-2.25 - 2.25i)T + 37iT^{2} \) |
| 41 | \( 1 - 1.59iT - 41T^{2} \) |
| 43 | \( 1 + (-8.06 - 8.06i)T + 43iT^{2} \) |
| 47 | \( 1 + 4.43iT - 47T^{2} \) |
| 53 | \( 1 + (-0.481 - 0.481i)T + 53iT^{2} \) |
| 59 | \( 1 + (3.08 - 3.08i)T - 59iT^{2} \) |
| 61 | \( 1 + (-3.46 - 3.46i)T + 61iT^{2} \) |
| 67 | \( 1 + (1.80 - 1.80i)T - 67iT^{2} \) |
| 71 | \( 1 + 0.379iT - 71T^{2} \) |
| 73 | \( 1 - 8.37T + 73T^{2} \) |
| 79 | \( 1 + 11.2T + 79T^{2} \) |
| 83 | \( 1 + (-8.24 + 8.24i)T - 83iT^{2} \) |
| 89 | \( 1 + 11.9iT - 89T^{2} \) |
| 97 | \( 1 - 6.50iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.00697367385602910890641148544, −11.16798891070024673311291319550, −10.07412953818443109328171134122, −9.456959018872796010772599183630, −8.192030303368132344774634715988, −7.38983945488264303788721635524, −6.03268935831195966919860786345, −4.81683526657843296019461135696, −4.24730731480869555555665123656, −2.32319526533932461385536910979,
0.20308828246496007052498755901, 2.74264371304597787387455333271, 3.73959879610082260847040652376, 5.49518139466418070481460133822, 6.37525346869464467055887917563, 7.29436619328304875702308284783, 8.158240309010356170888724111408, 9.497495985913684696975173738309, 10.48796547938295616710210211918, 11.17647390987075107900921031939