Properties

Label 4-2e10-1.1-c7e2-0-1
Degree $4$
Conductor $1024$
Sign $1$
Analytic cond. $99.9264$
Root an. cond. $3.16169$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 140·5-s − 534·9-s + 2.75e4·13-s + 3.39e4·17-s − 1.41e5·25-s + 6.83e4·29-s + 7.04e4·37-s − 9.69e5·41-s − 7.47e4·45-s − 4.02e5·49-s + 1.70e6·53-s + 1.43e5·61-s + 3.85e6·65-s + 7.82e6·73-s − 4.49e6·81-s + 4.75e6·85-s − 5.02e6·89-s − 1.00e5·97-s + 3.00e7·101-s + 3.56e7·109-s − 3.76e7·113-s − 1.46e7·117-s + 1.35e7·121-s − 3.14e7·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 0.500·5-s − 0.244·9-s + 3.47·13-s + 1.67·17-s − 1.81·25-s + 0.520·29-s + 0.228·37-s − 2.19·41-s − 0.122·45-s − 0.489·49-s + 1.57·53-s + 0.0808·61-s + 1.73·65-s + 2.35·73-s − 0.940·81-s + 0.840·85-s − 0.755·89-s − 0.0111·97-s + 2.90·101-s + 2.63·109-s − 2.45·113-s − 0.848·117-s + 0.697·121-s − 1.43·125-s + 0.260·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1024\)    =    \(2^{10}\)
Sign: $1$
Analytic conductor: \(99.9264\)
Root analytic conductor: \(3.16169\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1024,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(3.136989881\)
\(L(\frac12)\) \(\approx\) \(3.136989881\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$C_2^2$ \( 1 + 178 p T^{2} + p^{14} T^{4} \)
5$C_2$ \( ( 1 - 14 p T + p^{7} T^{2} )^{2} \)
7$C_2^2$ \( 1 + 402926 T^{2} + p^{14} T^{4} \)
11$C_2^2$ \( 1 - 13591418 T^{2} + p^{14} T^{4} \)
13$C_2$ \( ( 1 - 13758 T + p^{7} T^{2} )^{2} \)
17$C_2$ \( ( 1 - 16994 T + p^{7} T^{2} )^{2} \)
19$C_2^2$ \( 1 + 630363638 T^{2} + p^{14} T^{4} \)
23$C_2^2$ \( 1 + 5763312334 T^{2} + p^{14} T^{4} \)
29$C_2$ \( ( 1 - 34190 T + p^{7} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 40513345982 T^{2} + p^{14} T^{4} \)
37$C_2$ \( ( 1 - 35206 T + p^{7} T^{2} )^{2} \)
41$C_2$ \( ( 1 + 484550 T + p^{7} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 91999366214 T^{2} + p^{14} T^{4} \)
47$C_2^2$ \( 1 - 443321730914 T^{2} + p^{14} T^{4} \)
53$C_2$ \( ( 1 - 851702 T + p^{7} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 4493632970278 T^{2} + p^{14} T^{4} \)
61$C_2$ \( ( 1 - 71630 T + p^{7} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 12026991155606 T^{2} + p^{14} T^{4} \)
71$C_2^2$ \( 1 + 17616631546222 T^{2} + p^{14} T^{4} \)
73$C_2$ \( ( 1 - 3912042 T + p^{7} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 38308877392478 T^{2} + p^{14} T^{4} \)
83$C_2^2$ \( 1 + 51911300603254 T^{2} + p^{14} T^{4} \)
89$C_2$ \( ( 1 + 2510630 T + p^{7} T^{2} )^{2} \)
97$C_2$ \( ( 1 + 50094 T + p^{7} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.61119816610284121882244230925, −15.10460115176463603531950070688, −13.95488558825590140497919544176, −13.87137903170301488018165544990, −13.32285673699580389525958593877, −12.58356187527151569546358120110, −11.55101042266692944063790204569, −11.41798884937890434071286807293, −10.35855480020952462284414183205, −10.01755121287953035290227069540, −8.968633866164732466230254771445, −8.407707465671385532909313373398, −7.83185609389227802420385575571, −6.53834836680747702230284957316, −5.97850280917441865119974233124, −5.39854234455545785684287278371, −3.83472262024268902361626852097, −3.37944066532676896011382744824, −1.73936096582412474192260767759, −0.932052868461761004513847193555, 0.932052868461761004513847193555, 1.73936096582412474192260767759, 3.37944066532676896011382744824, 3.83472262024268902361626852097, 5.39854234455545785684287278371, 5.97850280917441865119974233124, 6.53834836680747702230284957316, 7.83185609389227802420385575571, 8.407707465671385532909313373398, 8.968633866164732466230254771445, 10.01755121287953035290227069540, 10.35855480020952462284414183205, 11.41798884937890434071286807293, 11.55101042266692944063790204569, 12.58356187527151569546358120110, 13.32285673699580389525958593877, 13.87137903170301488018165544990, 13.95488558825590140497919544176, 15.10460115176463603531950070688, 15.61119816610284121882244230925

Graph of the $Z$-function along the critical line