Properties

Label 2-2e5-1.1-c9-0-5
Degree $2$
Conductor $32$
Sign $1$
Analytic cond. $16.4811$
Root an. cond. $4.05969$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 252.·3-s + 2.01e3·5-s + 3.03e3·7-s + 4.41e4·9-s − 4.24e4·11-s − 7.41e4·13-s + 5.10e5·15-s − 6.07e5·17-s − 1.64e5·19-s + 7.68e5·21-s + 2.08e6·23-s + 2.12e6·25-s + 6.19e6·27-s + 1.87e6·29-s − 6.69e5·31-s − 1.07e7·33-s + 6.13e6·35-s − 5.06e6·37-s − 1.87e7·39-s − 1.46e7·41-s − 1.15e7·43-s + 8.92e7·45-s + 3.35e7·47-s − 3.11e7·49-s − 1.53e8·51-s − 2.03e7·53-s − 8.58e7·55-s + ⋯
L(s)  = 1  + 1.80·3-s + 1.44·5-s + 0.478·7-s + 2.24·9-s − 0.875·11-s − 0.720·13-s + 2.60·15-s − 1.76·17-s − 0.290·19-s + 0.861·21-s + 1.55·23-s + 1.08·25-s + 2.24·27-s + 0.492·29-s − 0.130·31-s − 1.57·33-s + 0.691·35-s − 0.443·37-s − 1.29·39-s − 0.808·41-s − 0.517·43-s + 3.24·45-s + 1.00·47-s − 0.771·49-s − 3.17·51-s − 0.355·53-s − 1.26·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32\)    =    \(2^{5}\)
Sign: $1$
Analytic conductor: \(16.4811\)
Root analytic conductor: \(4.05969\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 32,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(4.095318164\)
\(L(\frac12)\) \(\approx\) \(4.095318164\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 252.T + 1.96e4T^{2} \)
5 \( 1 - 2.01e3T + 1.95e6T^{2} \)
7 \( 1 - 3.03e3T + 4.03e7T^{2} \)
11 \( 1 + 4.24e4T + 2.35e9T^{2} \)
13 \( 1 + 7.41e4T + 1.06e10T^{2} \)
17 \( 1 + 6.07e5T + 1.18e11T^{2} \)
19 \( 1 + 1.64e5T + 3.22e11T^{2} \)
23 \( 1 - 2.08e6T + 1.80e12T^{2} \)
29 \( 1 - 1.87e6T + 1.45e13T^{2} \)
31 \( 1 + 6.69e5T + 2.64e13T^{2} \)
37 \( 1 + 5.06e6T + 1.29e14T^{2} \)
41 \( 1 + 1.46e7T + 3.27e14T^{2} \)
43 \( 1 + 1.15e7T + 5.02e14T^{2} \)
47 \( 1 - 3.35e7T + 1.11e15T^{2} \)
53 \( 1 + 2.03e7T + 3.29e15T^{2} \)
59 \( 1 - 1.19e8T + 8.66e15T^{2} \)
61 \( 1 + 9.81e7T + 1.16e16T^{2} \)
67 \( 1 - 1.01e8T + 2.72e16T^{2} \)
71 \( 1 + 3.11e8T + 4.58e16T^{2} \)
73 \( 1 + 6.82e6T + 5.88e16T^{2} \)
79 \( 1 - 5.23e8T + 1.19e17T^{2} \)
83 \( 1 + 2.37e8T + 1.86e17T^{2} \)
89 \( 1 + 6.21e8T + 3.50e17T^{2} \)
97 \( 1 - 1.11e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.61196508332687456241825280383, −13.57011899031104444858753122405, −13.01496005788793699353265360045, −10.53920138643421407714550341994, −9.392791538537532033175987673594, −8.490335207057929231208692765928, −6.97656415521782590375495518325, −4.83661260282335582137713640717, −2.72762085006925955836623305090, −1.87636848071045217714746157721, 1.87636848071045217714746157721, 2.72762085006925955836623305090, 4.83661260282335582137713640717, 6.97656415521782590375495518325, 8.490335207057929231208692765928, 9.392791538537532033175987673594, 10.53920138643421407714550341994, 13.01496005788793699353265360045, 13.57011899031104444858753122405, 14.61196508332687456241825280383

Graph of the $Z$-function along the critical line