L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (2.16 + 1.52i)7-s + 0.999·8-s + (4.29 + 2.48i)11-s + 5.49·13-s + (0.243 − 2.63i)14-s + (−0.5 − 0.866i)16-s + (−2.66 − 1.53i)17-s + (2.68 − 1.55i)19-s − 4.96i·22-s + (3.08 + 5.34i)23-s + (−2.74 − 4.75i)26-s + (−2.40 + 1.10i)28-s − 6.67i·29-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.816 + 0.577i)7-s + 0.353·8-s + (1.29 + 0.748i)11-s + 1.52·13-s + (0.0649 − 0.704i)14-s + (−0.125 − 0.216i)16-s + (−0.645 − 0.372i)17-s + (0.616 − 0.355i)19-s − 1.05i·22-s + (0.643 + 1.11i)23-s + (−0.538 − 0.933i)26-s + (−0.454 + 0.209i)28-s − 1.24i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.116i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 + 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.032706688\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.032706688\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-2.16 - 1.52i)T \) |
good | 11 | \( 1 + (-4.29 - 2.48i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 5.49T + 13T^{2} \) |
| 17 | \( 1 + (2.66 + 1.53i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.68 + 1.55i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.08 - 5.34i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 6.67iT - 29T^{2} \) |
| 31 | \( 1 + (1.01 + 0.586i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-9.27 + 5.35i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 8.39T + 41T^{2} \) |
| 43 | \( 1 - 8.81iT - 43T^{2} \) |
| 47 | \( 1 + (3.59 - 2.07i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.22 + 3.85i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.00 - 5.20i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.05 + 5.22i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (10.3 + 5.97i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 0.973iT - 71T^{2} \) |
| 73 | \( 1 + (8.34 - 14.4i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.12 + 3.67i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 14.2iT - 83T^{2} \) |
| 89 | \( 1 + (7.38 + 12.7i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 4.41T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.845668588872647426750828035796, −8.091296825745834823167439983424, −7.31277797075660528014061709972, −6.43676321824019025800277171104, −5.61009022444790218570691063384, −4.57793631365576700489415027496, −3.96497969760451623072953162992, −2.93980247930746861182821653312, −1.82737092738703946143744489086, −1.12446845233006850054230006457,
0.936949797295644206587327979160, 1.60922967449158044086794047638, 3.31852843090361341534482983541, 4.06531791424866426746025570430, 4.87990317337946477754891664796, 5.87425185226814943266819597310, 6.51774050708750867025214339534, 7.10774019275121141974724758274, 8.102120508318499091920321864543, 8.755111021141802138713225288473