L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (0.295 − 2.62i)7-s − 0.999i·8-s + (0.570 + 0.329i)11-s + 6.13i·13-s + (−1.05 − 2.42i)14-s + (−0.5 − 0.866i)16-s + (−2.43 + 4.22i)17-s + (−6.30 + 3.63i)19-s + 0.659·22-s + (−3.98 + 2.29i)23-s + (3.06 + 5.31i)26-s + (−2.12 − 1.57i)28-s + 8.09i·29-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + (0.111 − 0.993i)7-s − 0.353i·8-s + (0.172 + 0.0993i)11-s + 1.70i·13-s + (−0.282 − 0.648i)14-s + (−0.125 − 0.216i)16-s + (−0.591 + 1.02i)17-s + (−1.44 + 0.834i)19-s + 0.140·22-s + (−0.830 + 0.479i)23-s + (0.601 + 1.04i)26-s + (−0.402 − 0.296i)28-s + 1.50i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.405 - 0.914i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.405 - 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.695110674\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.695110674\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.295 + 2.62i)T \) |
good | 11 | \( 1 + (-0.570 - 0.329i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 6.13iT - 13T^{2} \) |
| 17 | \( 1 + (2.43 - 4.22i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (6.30 - 3.63i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.98 - 2.29i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 8.09iT - 29T^{2} \) |
| 31 | \( 1 + (-0.759 - 0.438i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.05 - 8.75i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 6.25T + 41T^{2} \) |
| 43 | \( 1 - 9.03T + 43T^{2} \) |
| 47 | \( 1 + (6.00 + 10.3i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-10.5 - 6.10i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.06 + 7.04i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.0618 - 0.0357i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.666 + 1.15i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2.60iT - 71T^{2} \) |
| 73 | \( 1 + (-2.44 - 1.41i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.88 + 5.00i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 7.44T + 83T^{2} \) |
| 89 | \( 1 + (2.66 + 4.61i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 11.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.756372791010738458149131172985, −8.161310406112259171753584258452, −6.97137461650393653945385345234, −6.65234809333327367885385850025, −5.82365678645640629144571543193, −4.62242699260344212272286298189, −4.15225027248829121818664562539, −3.54688575291035924297328131377, −2.07459346000325634827607548113, −1.47895866596135722576549134044,
0.39455396283672155178036625955, 2.38449917694813693389723312879, 2.68143952384469683025584415671, 3.99588806830018783637086016257, 4.71533639232852958687022711660, 5.63200746154573676982488776618, 6.06308523506698412161116927558, 6.92507113285996012079857179232, 7.87170464116322797606848559714, 8.383814203472661722606460825291