Properties

Label 2-315-1.1-c7-0-25
Degree $2$
Conductor $315$
Sign $1$
Analytic cond. $98.4012$
Root an. cond. $9.91974$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.11·2-s − 111.·4-s + 125·5-s + 343·7-s + 983.·8-s − 514.·10-s + 4.66e3·11-s + 5.47e3·13-s − 1.41e3·14-s + 1.01e4·16-s − 3.72e3·17-s + 4.79e4·19-s − 1.38e4·20-s − 1.91e4·22-s − 5.85e4·23-s + 1.56e4·25-s − 2.25e4·26-s − 3.81e4·28-s + 1.90e5·29-s − 9.82e4·31-s − 1.67e5·32-s + 1.53e4·34-s + 4.28e4·35-s + 2.00e5·37-s − 1.97e5·38-s + 1.22e5·40-s + 2.31e4·41-s + ⋯
L(s)  = 1  − 0.363·2-s − 0.867·4-s + 0.447·5-s + 0.377·7-s + 0.679·8-s − 0.162·10-s + 1.05·11-s + 0.691·13-s − 0.137·14-s + 0.620·16-s − 0.183·17-s + 1.60·19-s − 0.388·20-s − 0.383·22-s − 1.00·23-s + 0.199·25-s − 0.251·26-s − 0.328·28-s + 1.45·29-s − 0.592·31-s − 0.904·32-s + 0.0668·34-s + 0.169·35-s + 0.650·37-s − 0.583·38-s + 0.303·40-s + 0.0525·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(98.4012\)
Root analytic conductor: \(9.91974\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 315,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.992098398\)
\(L(\frac12)\) \(\approx\) \(1.992098398\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 125T \)
7 \( 1 - 343T \)
good2 \( 1 + 4.11T + 128T^{2} \)
11 \( 1 - 4.66e3T + 1.94e7T^{2} \)
13 \( 1 - 5.47e3T + 6.27e7T^{2} \)
17 \( 1 + 3.72e3T + 4.10e8T^{2} \)
19 \( 1 - 4.79e4T + 8.93e8T^{2} \)
23 \( 1 + 5.85e4T + 3.40e9T^{2} \)
29 \( 1 - 1.90e5T + 1.72e10T^{2} \)
31 \( 1 + 9.82e4T + 2.75e10T^{2} \)
37 \( 1 - 2.00e5T + 9.49e10T^{2} \)
41 \( 1 - 2.31e4T + 1.94e11T^{2} \)
43 \( 1 + 6.84e5T + 2.71e11T^{2} \)
47 \( 1 + 3.89e5T + 5.06e11T^{2} \)
53 \( 1 - 4.32e5T + 1.17e12T^{2} \)
59 \( 1 + 1.88e6T + 2.48e12T^{2} \)
61 \( 1 - 7.85e5T + 3.14e12T^{2} \)
67 \( 1 + 2.66e4T + 6.06e12T^{2} \)
71 \( 1 - 4.59e6T + 9.09e12T^{2} \)
73 \( 1 - 2.31e6T + 1.10e13T^{2} \)
79 \( 1 + 8.00e6T + 1.92e13T^{2} \)
83 \( 1 - 4.35e5T + 2.71e13T^{2} \)
89 \( 1 - 3.87e6T + 4.42e13T^{2} \)
97 \( 1 - 1.99e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.17547483737108297349704152275, −9.492197613928703324715672628767, −8.671860166330310621657717487555, −7.83064894983703769329473399609, −6.56696323922347938014832194039, −5.47457782827690615471708842201, −4.44236708460964375912492680876, −3.38741228925464854287449271912, −1.64340069742392157321831715935, −0.796405820617826687647526462390, 0.796405820617826687647526462390, 1.64340069742392157321831715935, 3.38741228925464854287449271912, 4.44236708460964375912492680876, 5.47457782827690615471708842201, 6.56696323922347938014832194039, 7.83064894983703769329473399609, 8.671860166330310621657717487555, 9.492197613928703324715672628767, 10.17547483737108297349704152275

Graph of the $Z$-function along the critical line