L(s) = 1 | + 0.831·2-s + (−0.611 − 1.62i)3-s − 1.30·4-s + (−0.5 + 0.866i)5-s + (−0.507 − 1.34i)6-s + (−2.57 + 0.606i)7-s − 2.75·8-s + (−2.25 + 1.98i)9-s + (−0.415 + 0.719i)10-s + (−1.06 − 1.83i)11-s + (0.799 + 2.12i)12-s + (0.552 + 0.956i)13-s + (−2.14 + 0.504i)14-s + (1.70 + 0.281i)15-s + 0.331·16-s + (−3.19 + 5.53i)17-s + ⋯ |
L(s) = 1 | + 0.587·2-s + (−0.352 − 0.935i)3-s − 0.654·4-s + (−0.223 + 0.387i)5-s + (−0.207 − 0.549i)6-s + (−0.973 + 0.229i)7-s − 0.972·8-s + (−0.751 + 0.660i)9-s + (−0.131 + 0.227i)10-s + (−0.319 − 0.553i)11-s + (0.230 + 0.612i)12-s + (0.153 + 0.265i)13-s + (−0.572 + 0.134i)14-s + (0.441 + 0.0726i)15-s + 0.0829·16-s + (−0.775 + 1.34i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.945 - 0.326i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.945 - 0.326i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0173505 + 0.103343i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0173505 + 0.103343i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.611 + 1.62i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (2.57 - 0.606i)T \) |
good | 2 | \( 1 - 0.831T + 2T^{2} \) |
| 11 | \( 1 + (1.06 + 1.83i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.552 - 0.956i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (3.19 - 5.53i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.76 + 4.79i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.82 + 6.62i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.160 - 0.278i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 10.8T + 31T^{2} \) |
| 37 | \( 1 + (-1.76 - 3.05i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (5.63 + 9.75i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.52 - 7.83i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 2.35T + 47T^{2} \) |
| 53 | \( 1 + (-5.02 + 8.71i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 5.51T + 59T^{2} \) |
| 61 | \( 1 + 5.97T + 61T^{2} \) |
| 67 | \( 1 - 0.240T + 67T^{2} \) |
| 71 | \( 1 - 3.28T + 71T^{2} \) |
| 73 | \( 1 + (3.39 - 5.87i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + 5.18T + 79T^{2} \) |
| 83 | \( 1 + (2.94 - 5.10i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.74 - 4.75i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (8.61 - 14.9i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.26874702300926515574286045986, −10.48959751270968460879948556833, −8.966916205640809721769726060036, −8.431890653160238113474188271931, −6.86935759345551466493222343276, −6.29506732161648292330083516469, −5.22768336717817415255703235295, −3.82314422813488420386668778003, −2.57462564618641762363952094901, −0.06289983167698247527667375200,
3.21114351663055474829369965878, 4.08138858395679322189640645493, 5.08281455466874657059522705508, 5.87980574667819543039837165109, 7.25404392407616309831560978670, 8.789007592614519944473068918512, 9.421954709844770120560322992977, 10.17419954602703477493129681896, 11.32385978413400140824118055397, 12.29364747055753271370686185576