Properties

Label 2-3120-5.4-c1-0-34
Degree $2$
Conductor $3120$
Sign $0.932 - 0.360i$
Analytic cond. $24.9133$
Root an. cond. $4.99132$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + (2.08 − 0.805i)5-s + 3.70i·7-s − 9-s + 3.31·11-s + i·13-s + (−0.805 − 2.08i)15-s + 4.36i·17-s + 5.21·19-s + 3.70·21-s − 4.92i·23-s + (3.70 − 3.36i)25-s + i·27-s − 7.78·29-s − 0.0981·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + (0.932 − 0.360i)5-s + 1.39i·7-s − 0.333·9-s + 0.998·11-s + 0.277i·13-s + (−0.208 − 0.538i)15-s + 1.05i·17-s + 1.19·19-s + 0.807·21-s − 1.02i·23-s + (0.740 − 0.672i)25-s + 0.192i·27-s − 1.44·29-s − 0.0176·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.932 - 0.360i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.932 - 0.360i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3120\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13\)
Sign: $0.932 - 0.360i$
Analytic conductor: \(24.9133\)
Root analytic conductor: \(4.99132\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3120} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3120,\ (\ :1/2),\ 0.932 - 0.360i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.365680501\)
\(L(\frac12)\) \(\approx\) \(2.365680501\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 + (-2.08 + 0.805i)T \)
13 \( 1 - iT \)
good7 \( 1 - 3.70iT - 7T^{2} \)
11 \( 1 - 3.31T + 11T^{2} \)
17 \( 1 - 4.36iT - 17T^{2} \)
19 \( 1 - 5.21T + 19T^{2} \)
23 \( 1 + 4.92iT - 23T^{2} \)
29 \( 1 + 7.78T + 29T^{2} \)
31 \( 1 + 0.0981T + 31T^{2} \)
37 \( 1 - 2.92iT - 37T^{2} \)
41 \( 1 + 0.749T + 41T^{2} \)
43 \( 1 - 3.78iT - 43T^{2} \)
47 \( 1 - 5.67iT - 47T^{2} \)
53 \( 1 + 2.19iT - 53T^{2} \)
59 \( 1 - 0.108T + 59T^{2} \)
61 \( 1 - 12.1T + 61T^{2} \)
67 \( 1 - 12.4iT - 67T^{2} \)
71 \( 1 + 12.0T + 71T^{2} \)
73 \( 1 - 9.56iT - 73T^{2} \)
79 \( 1 - 14.6T + 79T^{2} \)
83 \( 1 - 16.7iT - 83T^{2} \)
89 \( 1 - 3.59T + 89T^{2} \)
97 \( 1 - 4.10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.709449433361620292342844867688, −8.240695888574173144452972209901, −7.08182825765185905023131579900, −6.33525906583198661410644394612, −5.78921593999875608568659333950, −5.18005247093501870769736388676, −4.03520996558239214019560905974, −2.84771743135232027145354908750, −2.01195636560396297365237826057, −1.23680581069162322501315425016, 0.810711765276717075172126639625, 1.93300566586562200950976494017, 3.32466395157566197252823154910, 3.72179159200953132990555009560, 4.86172264056813996188297998890, 5.51177084557634288928614315474, 6.39567490151033727518314959994, 7.28942760637427462152361240401, 7.57176606238020220019373145886, 9.065807137930113471522199446550

Graph of the $Z$-function along the critical line