Properties

Label 2-3120-5.4-c1-0-40
Degree $2$
Conductor $3120$
Sign $0.675 + 0.737i$
Analytic cond. $24.9133$
Root an. cond. $4.99132$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + (1.51 + 1.64i)5-s − 0.437i·7-s − 9-s − 5.73·11-s + i·13-s + (1.64 − 1.51i)15-s − 3.98i·17-s + 4.77·19-s − 0.437·21-s − 0.337i·23-s + (−0.437 + 4.98i)25-s + i·27-s − 1.72·29-s + 7.86·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + (0.675 + 0.737i)5-s − 0.165i·7-s − 0.333·9-s − 1.72·11-s + 0.277i·13-s + (0.425 − 0.389i)15-s − 0.965i·17-s + 1.09·19-s − 0.0954·21-s − 0.0704i·23-s + (−0.0875 + 0.996i)25-s + 0.192i·27-s − 0.319·29-s + 1.41·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.675 + 0.737i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.675 + 0.737i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3120\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13\)
Sign: $0.675 + 0.737i$
Analytic conductor: \(24.9133\)
Root analytic conductor: \(4.99132\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3120} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3120,\ (\ :1/2),\ 0.675 + 0.737i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.780101837\)
\(L(\frac12)\) \(\approx\) \(1.780101837\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 + (-1.51 - 1.64i)T \)
13 \( 1 - iT \)
good7 \( 1 + 0.437iT - 7T^{2} \)
11 \( 1 + 5.73T + 11T^{2} \)
17 \( 1 + 3.98iT - 17T^{2} \)
19 \( 1 - 4.77T + 19T^{2} \)
23 \( 1 + 0.337iT - 23T^{2} \)
29 \( 1 + 1.72T + 29T^{2} \)
31 \( 1 - 7.86T + 31T^{2} \)
37 \( 1 + 1.66iT - 37T^{2} \)
41 \( 1 - 2.68T + 41T^{2} \)
43 \( 1 + 2.27iT - 43T^{2} \)
47 \( 1 + 11.7iT - 47T^{2} \)
53 \( 1 + 14.2iT - 53T^{2} \)
59 \( 1 - 11.4T + 59T^{2} \)
61 \( 1 + 2.25T + 61T^{2} \)
67 \( 1 - 2.17iT - 67T^{2} \)
71 \( 1 - 13.6T + 71T^{2} \)
73 \( 1 + 2.55iT - 73T^{2} \)
79 \( 1 - 2.55T + 79T^{2} \)
83 \( 1 - 5.41iT - 83T^{2} \)
89 \( 1 - 4.72T + 89T^{2} \)
97 \( 1 - 14.7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.443202789477749616766083232916, −7.69811636653851967230424131591, −7.11206867535802616352124249450, −6.48864990865865976512598471217, −5.37529288251178943504700022431, −5.16430289493607183085288624162, −3.62858584378613462780149607969, −2.68114357402759858069296774183, −2.17113307670652219735586477448, −0.65894092984323975932454051474, 0.979229579975708940818704798558, 2.34103309086372336051706024255, 3.06981546719444478636885936054, 4.29568554992396981841409973803, 5.01931067563408015181603307816, 5.63851229220451340399418674754, 6.20939840183108648972905667128, 7.57284348254593339484228266303, 8.085884210085220994989581422980, 8.823895278658221823485626622553

Graph of the $Z$-function along the critical line