L(s) = 1 | + (0.707 − 0.707i)2-s − i·3-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + (−0.707 − 0.707i)6-s + (−0.707 − 0.707i)8-s − 9-s + 1.00i·10-s + (−1.41 + 1.41i)11-s − 1.00·12-s − 13-s + (0.707 + 0.707i)15-s − 1.00·16-s + (−0.707 + 0.707i)18-s + (0.707 + 0.707i)20-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − i·3-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + (−0.707 − 0.707i)6-s + (−0.707 − 0.707i)8-s − 9-s + 1.00i·10-s + (−1.41 + 1.41i)11-s − 1.00·12-s − 13-s + (0.707 + 0.707i)15-s − 1.00·16-s + (−0.707 + 0.707i)18-s + (0.707 + 0.707i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.160 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.160 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.08001311124\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.08001311124\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
| 13 | \( 1 + T \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 - iT^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - 1.41iT - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 61 | \( 1 + (1 - i)T - iT^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + 1.41T + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + 2T + T^{2} \) |
| 83 | \( 1 + 1.41iT - T^{2} \) |
| 89 | \( 1 - 1.41T + T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.132239149331490120062351175364, −7.954575735829854232384846786333, −7.46554800379681735534188505968, −6.86022692852626790301970256145, −6.02247436752145706597905117965, −5.02497559814467665523069253253, −4.47689487045865461026577282405, −3.15133503387050127331573933314, −2.59755952013263953890126295506, −1.79181793040799001112143620030,
0.03470692101782975450575558167, 2.66877223551908649558626449409, 3.29711769106704733293278413975, 4.21357507361282376990810345026, 4.89881529778348761917045359375, 5.46618164495475627925674743316, 6.09298793381735070424610294119, 7.47234283285814979286356156250, 7.84155657410644360851355554088, 8.711990554621557499994340081543