L(s) = 1 | − 2·9-s − 4·13-s − 16-s − 4·61-s − 8·79-s + 3·81-s + 4·103-s + 8·117-s + 127-s + 131-s + 137-s + 139-s + 2·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 4·208-s + ⋯ |
L(s) = 1 | − 2·9-s − 4·13-s − 16-s − 4·61-s − 8·79-s + 3·81-s + 4·103-s + 8·117-s + 127-s + 131-s + 137-s + 139-s + 2·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 4·208-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.005383930850\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.005383930850\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.21687650180838788583029712927, −6.09298793381735070424610294119, −6.02247436752145706597905117965, −5.72245124528145281391761941462, −5.46618164495475627925674743316, −5.37228229604546389526875704777, −5.02497559814467665523069253253, −4.93948764310188089129296910328, −4.89881529778348761917045359375, −4.47689487045865461026577282405, −4.31126464811834611174770933723, −4.21357507361282376990810345026, −4.09074671647151457808933431874, −3.39969180934933823074972378983, −3.29711769106704733293278413975, −3.15133503387050127331573933314, −2.66877223551908649558626449409, −2.62083761514459993846421886758, −2.59755952013263953890126295506, −2.53318429246720296807905275780, −1.79181793040799001112143620030, −1.67382059304371206078745496482, −1.60738948439222232303369630040, −0.73174698881786034115263731854, −0.03470692101782975450575558167,
0.03470692101782975450575558167, 0.73174698881786034115263731854, 1.60738948439222232303369630040, 1.67382059304371206078745496482, 1.79181793040799001112143620030, 2.53318429246720296807905275780, 2.59755952013263953890126295506, 2.62083761514459993846421886758, 2.66877223551908649558626449409, 3.15133503387050127331573933314, 3.29711769106704733293278413975, 3.39969180934933823074972378983, 4.09074671647151457808933431874, 4.21357507361282376990810345026, 4.31126464811834611174770933723, 4.47689487045865461026577282405, 4.89881529778348761917045359375, 4.93948764310188089129296910328, 5.02497559814467665523069253253, 5.37228229604546389526875704777, 5.46618164495475627925674743316, 5.72245124528145281391761941462, 6.02247436752145706597905117965, 6.09298793381735070424610294119, 6.21687650180838788583029712927