Properties

Label 2-312-13.3-c5-0-33
Degree $2$
Conductor $312$
Sign $-0.595 + 0.803i$
Analytic cond. $50.0397$
Root an. cond. $7.07387$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.5 − 7.79i)3-s + 78.9·5-s + (60.7 − 105. i)7-s + (−40.5 + 70.1i)9-s + (−94.0 − 162. i)11-s + (−85.7 − 603. i)13-s + (−355. − 615. i)15-s + (34.3 − 59.4i)17-s + (−33.2 + 57.5i)19-s − 1.09e3·21-s + (−1.71e3 − 2.97e3i)23-s + 3.11e3·25-s + 729·27-s + (103. + 178. i)29-s − 298.·31-s + ⋯
L(s)  = 1  + (−0.288 − 0.499i)3-s + 1.41·5-s + (0.468 − 0.811i)7-s + (−0.166 + 0.288i)9-s + (−0.234 − 0.406i)11-s + (−0.140 − 0.990i)13-s + (−0.407 − 0.706i)15-s + (0.0287 − 0.0498i)17-s + (−0.0211 + 0.0366i)19-s − 0.541·21-s + (−0.676 − 1.17i)23-s + 0.995·25-s + 0.192·27-s + (0.0227 + 0.0394i)29-s − 0.0557·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.595 + 0.803i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.595 + 0.803i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(312\)    =    \(2^{3} \cdot 3 \cdot 13\)
Sign: $-0.595 + 0.803i$
Analytic conductor: \(50.0397\)
Root analytic conductor: \(7.07387\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{312} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 312,\ (\ :5/2),\ -0.595 + 0.803i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.085436602\)
\(L(\frac12)\) \(\approx\) \(2.085436602\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (4.5 + 7.79i)T \)
13 \( 1 + (85.7 + 603. i)T \)
good5 \( 1 - 78.9T + 3.12e3T^{2} \)
7 \( 1 + (-60.7 + 105. i)T + (-8.40e3 - 1.45e4i)T^{2} \)
11 \( 1 + (94.0 + 162. i)T + (-8.05e4 + 1.39e5i)T^{2} \)
17 \( 1 + (-34.3 + 59.4i)T + (-7.09e5 - 1.22e6i)T^{2} \)
19 \( 1 + (33.2 - 57.5i)T + (-1.23e6 - 2.14e6i)T^{2} \)
23 \( 1 + (1.71e3 + 2.97e3i)T + (-3.21e6 + 5.57e6i)T^{2} \)
29 \( 1 + (-103. - 178. i)T + (-1.02e7 + 1.77e7i)T^{2} \)
31 \( 1 + 298.T + 2.86e7T^{2} \)
37 \( 1 + (-3.82e3 - 6.62e3i)T + (-3.46e7 + 6.00e7i)T^{2} \)
41 \( 1 + (-3.83e3 - 6.64e3i)T + (-5.79e7 + 1.00e8i)T^{2} \)
43 \( 1 + (-1.39e3 + 2.41e3i)T + (-7.35e7 - 1.27e8i)T^{2} \)
47 \( 1 - 2.21e3T + 2.29e8T^{2} \)
53 \( 1 + 2.09e4T + 4.18e8T^{2} \)
59 \( 1 + (-1.79e4 + 3.10e4i)T + (-3.57e8 - 6.19e8i)T^{2} \)
61 \( 1 + (-2.49e3 + 4.31e3i)T + (-4.22e8 - 7.31e8i)T^{2} \)
67 \( 1 + (1.31e4 + 2.27e4i)T + (-6.75e8 + 1.16e9i)T^{2} \)
71 \( 1 + (-2.45e4 + 4.25e4i)T + (-9.02e8 - 1.56e9i)T^{2} \)
73 \( 1 + 3.24e4T + 2.07e9T^{2} \)
79 \( 1 + 7.59e4T + 3.07e9T^{2} \)
83 \( 1 + 1.04e5T + 3.93e9T^{2} \)
89 \( 1 + (6.96e4 + 1.20e5i)T + (-2.79e9 + 4.83e9i)T^{2} \)
97 \( 1 + (-3.17e4 + 5.49e4i)T + (-4.29e9 - 7.43e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.44407140699766963524410036774, −9.836274698387740493940297543443, −8.496370158604677917895739744861, −7.61321187668545313407750526293, −6.42935773900859565428189319975, −5.69471592448529632126531178011, −4.62540281158029818454065429633, −2.87383152276269829663487302513, −1.67398452062337375114753186240, −0.54329635736478658980977238535, 1.60446161747758800850611060852, 2.49395379766538467072298593712, 4.22997985124056789294924808585, 5.41498745920613095419896578435, 5.93221840307397563199020015010, 7.18863226102850714567896906273, 8.634477095942360805889838327669, 9.472576197728451755620411823167, 10.01858612248309490594966074979, 11.15449436474031919288219006288

Graph of the $Z$-function along the critical line