L(s) = 1 | + (0.437 − 1.34i)2-s − 3-s + (−1.61 − 1.17i)4-s + (−1.98 + 1.98i)5-s + (−0.437 + 1.34i)6-s + (3.05 + 3.05i)7-s + (−2.28 + 1.66i)8-s + 9-s + (1.79 + 3.52i)10-s + (−1.08 + 1.08i)11-s + (1.61 + 1.17i)12-s + (3.57 − 0.429i)13-s + (5.45 − 2.77i)14-s + (1.98 − 1.98i)15-s + (1.23 + 3.80i)16-s + 5.70i·17-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)2-s − 0.577·3-s + (−0.808 − 0.588i)4-s + (−0.885 + 0.885i)5-s + (−0.178 + 0.549i)6-s + (1.15 + 1.15i)7-s + (−0.809 + 0.587i)8-s + 0.333·9-s + (0.568 + 1.11i)10-s + (−0.327 + 0.327i)11-s + (0.466 + 0.339i)12-s + (0.992 − 0.119i)13-s + (1.45 − 0.742i)14-s + (0.511 − 0.511i)15-s + (0.308 + 0.951i)16-s + 1.38i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.947275 + 0.218387i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.947275 + 0.218387i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.437 + 1.34i)T \) |
| 3 | \( 1 + T \) |
| 13 | \( 1 + (-3.57 + 0.429i)T \) |
good | 5 | \( 1 + (1.98 - 1.98i)T - 5iT^{2} \) |
| 7 | \( 1 + (-3.05 - 3.05i)T + 7iT^{2} \) |
| 11 | \( 1 + (1.08 - 1.08i)T - 11iT^{2} \) |
| 17 | \( 1 - 5.70iT - 17T^{2} \) |
| 19 | \( 1 + (4.39 + 4.39i)T + 19iT^{2} \) |
| 23 | \( 1 - 2.95T + 23T^{2} \) |
| 29 | \( 1 - 6.96iT - 29T^{2} \) |
| 31 | \( 1 + (3.05 - 3.05i)T - 31iT^{2} \) |
| 37 | \( 1 + (-5.14 - 5.14i)T + 37iT^{2} \) |
| 41 | \( 1 + (2.77 + 2.77i)T + 41iT^{2} \) |
| 43 | \( 1 + 3.00iT - 43T^{2} \) |
| 47 | \( 1 + (6.40 + 6.40i)T + 47iT^{2} \) |
| 53 | \( 1 - 4.28iT - 53T^{2} \) |
| 59 | \( 1 + (-3.00 + 3.00i)T - 59iT^{2} \) |
| 61 | \( 1 + 1.13iT - 61T^{2} \) |
| 67 | \( 1 + (-7.39 - 7.39i)T + 67iT^{2} \) |
| 71 | \( 1 + (-3.20 + 3.20i)T - 71iT^{2} \) |
| 73 | \( 1 + (-7.87 + 7.87i)T - 73iT^{2} \) |
| 79 | \( 1 + 4.46iT - 79T^{2} \) |
| 83 | \( 1 + (9.78 + 9.78i)T + 83iT^{2} \) |
| 89 | \( 1 + (-4.24 + 4.24i)T - 89iT^{2} \) |
| 97 | \( 1 + (11.5 + 11.5i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.50726576110301797893353369416, −11.01336300915587088255967257715, −10.48800773803309989136065104331, −8.852512015768167393789431002497, −8.228809634982789571346025608021, −6.70889760928480621070753756501, −5.52969122964190126880825480064, −4.55617723034296507069085036807, −3.31264062656489494613761347156, −1.85363383783938000197977688079,
0.74052835578404071019817391054, 3.95518926832530471550891821479, 4.52482989425685172924443279059, 5.52193734311549541452936133266, 6.79419067163890073688045560687, 7.962566010611214540817822424761, 8.176973734317899665540432187120, 9.556903549825458244208542808138, 11.01038696078384983240478759719, 11.55942655154703544671924895254