Properties

Label 2-31-31.27-c4-0-5
Degree $2$
Conductor $31$
Sign $0.278 + 0.960i$
Analytic cond. $3.20446$
Root an. cond. $1.79010$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.33 − 4.10i)2-s + (7.83 + 2.54i)3-s + (−2.15 + 1.56i)4-s + 21.7·5-s − 35.5i·6-s + (7.98 − 5.80i)7-s + (−46.6 − 33.8i)8-s + (−10.6 − 7.75i)9-s + (−29.0 − 89.3i)10-s + (−4.48 − 6.16i)11-s + (−20.8 + 6.76i)12-s + (116. + 37.9i)13-s + (−34.4 − 25.0i)14-s + (170. + 55.3i)15-s + (−90.0 + 277. i)16-s + (−123. + 170. i)17-s + ⋯
L(s)  = 1  + (−0.333 − 1.02i)2-s + (0.870 + 0.282i)3-s + (−0.134 + 0.0977i)4-s + 0.870·5-s − 0.988i·6-s + (0.162 − 0.118i)7-s + (−0.728 − 0.529i)8-s + (−0.131 − 0.0957i)9-s + (−0.290 − 0.893i)10-s + (−0.0370 − 0.0509i)11-s + (−0.144 + 0.0470i)12-s + (0.690 + 0.224i)13-s + (−0.175 − 0.127i)14-s + (0.757 + 0.246i)15-s + (−0.351 + 1.08i)16-s + (−0.427 + 0.588i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.278 + 0.960i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.278 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(31\)
Sign: $0.278 + 0.960i$
Analytic conductor: \(3.20446\)
Root analytic conductor: \(1.79010\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{31} (27, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 31,\ (\ :2),\ 0.278 + 0.960i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.35976 - 1.02196i\)
\(L(\frac12)\) \(\approx\) \(1.35976 - 1.02196i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 + (628. - 726. i)T \)
good2 \( 1 + (1.33 + 4.10i)T + (-12.9 + 9.40i)T^{2} \)
3 \( 1 + (-7.83 - 2.54i)T + (65.5 + 47.6i)T^{2} \)
5 \( 1 - 21.7T + 625T^{2} \)
7 \( 1 + (-7.98 + 5.80i)T + (741. - 2.28e3i)T^{2} \)
11 \( 1 + (4.48 + 6.16i)T + (-4.52e3 + 1.39e4i)T^{2} \)
13 \( 1 + (-116. - 37.9i)T + (2.31e4 + 1.67e4i)T^{2} \)
17 \( 1 + (123. - 170. i)T + (-2.58e4 - 7.94e4i)T^{2} \)
19 \( 1 + (-143. - 441. i)T + (-1.05e5 + 7.66e4i)T^{2} \)
23 \( 1 + (20.4 - 28.1i)T + (-8.64e4 - 2.66e5i)T^{2} \)
29 \( 1 + (-596. + 193. i)T + (5.72e5 - 4.15e5i)T^{2} \)
37 \( 1 - 1.79e3iT - 1.87e6T^{2} \)
41 \( 1 + (634. + 1.95e3i)T + (-2.28e6 + 1.66e6i)T^{2} \)
43 \( 1 + (-38.7 + 12.6i)T + (2.76e6 - 2.00e6i)T^{2} \)
47 \( 1 + (-136. + 419. i)T + (-3.94e6 - 2.86e6i)T^{2} \)
53 \( 1 + (-1.57e3 + 2.16e3i)T + (-2.43e6 - 7.50e6i)T^{2} \)
59 \( 1 + (143. - 441. i)T + (-9.80e6 - 7.12e6i)T^{2} \)
61 \( 1 + 4.96e3iT - 1.38e7T^{2} \)
67 \( 1 - 6.40e3T + 2.01e7T^{2} \)
71 \( 1 + (4.72e3 + 3.43e3i)T + (7.85e6 + 2.41e7i)T^{2} \)
73 \( 1 + (5.09e3 + 7.01e3i)T + (-8.77e6 + 2.70e7i)T^{2} \)
79 \( 1 + (-1.43e3 + 1.98e3i)T + (-1.20e7 - 3.70e7i)T^{2} \)
83 \( 1 + (-7.08e3 + 2.30e3i)T + (3.83e7 - 2.78e7i)T^{2} \)
89 \( 1 + (5.88e3 + 8.09e3i)T + (-1.93e7 + 5.96e7i)T^{2} \)
97 \( 1 + (5.30e3 - 3.85e3i)T + (2.73e7 - 8.41e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.75704401636519202731115325336, −14.49592083309317327736106231759, −13.47140764457019623325977217717, −11.98889575790517399562045311362, −10.57978908454147543647611765820, −9.601499485780804498221480014661, −8.496858385337262857195978197139, −6.14251071591026133673581633430, −3.47986995741671159991473232336, −1.82023440230709000909929159331, 2.56119058695980546543958811701, 5.61330482987361321361405498015, 7.09866987987688340976285309282, 8.402733818412360354408954578819, 9.353028095579098208285475518494, 11.32643304673427557463925143965, 13.23930003136813688256242346046, 14.12062084533466927094342873307, 15.21876062744465597759404019300, 16.33432446313044691884112076799

Graph of the $Z$-function along the critical line