L(s) = 1 | + (−3.66 + 2.66i)2-s + (7.06 − 9.72i)3-s + (1.41 − 4.34i)4-s − 44.3·5-s + 54.5i·6-s + (17.8 − 54.9i)7-s + (−16.0 − 49.2i)8-s + (−19.6 − 60.4i)9-s + (162. − 118. i)10-s + (−130. − 42.3i)11-s + (−32.3 − 44.4i)12-s + (23.2 − 31.9i)13-s + (80.9 + 249. i)14-s + (−313. + 431. i)15-s + (249. + 181. i)16-s + (285. − 92.8i)17-s + ⋯ |
L(s) = 1 | + (−0.917 + 0.666i)2-s + (0.785 − 1.08i)3-s + (0.0882 − 0.271i)4-s − 1.77·5-s + 1.51i·6-s + (0.364 − 1.12i)7-s + (−0.250 − 0.770i)8-s + (−0.242 − 0.746i)9-s + (1.62 − 1.18i)10-s + (−1.07 − 0.349i)11-s + (−0.224 − 0.308i)12-s + (0.137 − 0.189i)13-s + (0.412 + 1.27i)14-s + (−1.39 + 1.91i)15-s + (0.974 + 0.707i)16-s + (0.988 − 0.321i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.409 + 0.912i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.409 + 0.912i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.278985 - 0.431158i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.278985 - 0.431158i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 + (-661. + 697. i)T \) |
good | 2 | \( 1 + (3.66 - 2.66i)T + (4.94 - 15.2i)T^{2} \) |
| 3 | \( 1 + (-7.06 + 9.72i)T + (-25.0 - 77.0i)T^{2} \) |
| 5 | \( 1 + 44.3T + 625T^{2} \) |
| 7 | \( 1 + (-17.8 + 54.9i)T + (-1.94e3 - 1.41e3i)T^{2} \) |
| 11 | \( 1 + (130. + 42.3i)T + (1.18e4 + 8.60e3i)T^{2} \) |
| 13 | \( 1 + (-23.2 + 31.9i)T + (-8.82e3 - 2.71e4i)T^{2} \) |
| 17 | \( 1 + (-285. + 92.8i)T + (6.75e4 - 4.90e4i)T^{2} \) |
| 19 | \( 1 + (426. - 309. i)T + (4.02e4 - 1.23e5i)T^{2} \) |
| 23 | \( 1 + (241. - 78.5i)T + (2.26e5 - 1.64e5i)T^{2} \) |
| 29 | \( 1 + (114. + 157. i)T + (-2.18e5 + 6.72e5i)T^{2} \) |
| 37 | \( 1 + 972. iT - 1.87e6T^{2} \) |
| 41 | \( 1 + (-208. + 151. i)T + (8.73e5 - 2.68e6i)T^{2} \) |
| 43 | \( 1 + (1.70e3 + 2.34e3i)T + (-1.05e6 + 3.25e6i)T^{2} \) |
| 47 | \( 1 + (2.01e3 + 1.46e3i)T + (1.50e6 + 4.64e6i)T^{2} \) |
| 53 | \( 1 + (-1.64e3 + 535. i)T + (6.38e6 - 4.63e6i)T^{2} \) |
| 59 | \( 1 + (-1.70e3 - 1.23e3i)T + (3.74e6 + 1.15e7i)T^{2} \) |
| 61 | \( 1 + 4.44e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 + 2.10e3T + 2.01e7T^{2} \) |
| 71 | \( 1 + (421. + 1.29e3i)T + (-2.05e7 + 1.49e7i)T^{2} \) |
| 73 | \( 1 + (-4.57e3 - 1.48e3i)T + (2.29e7 + 1.66e7i)T^{2} \) |
| 79 | \( 1 + (1.99e3 - 649. i)T + (3.15e7 - 2.28e7i)T^{2} \) |
| 83 | \( 1 + (488. + 672. i)T + (-1.46e7 + 4.51e7i)T^{2} \) |
| 89 | \( 1 + (-3.62e3 - 1.17e3i)T + (5.07e7 + 3.68e7i)T^{2} \) |
| 97 | \( 1 + (2.92e3 - 9.01e3i)T + (-7.16e7 - 5.20e7i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.95539244526263381792656639727, −14.76574876575459256196606056268, −13.31643169559792382753517524600, −12.18058809876088603013861536389, −10.49808113114910375098720222841, −8.177597187758791052562106547211, −7.998586245417716542200762142126, −7.08408589256843363112420704289, −3.70876973446125502769015174062, −0.46866457158664630946288294189,
2.91467796914792910882035922142, 4.72900246297458642514685501030, 8.126343285489941827336002387340, 8.662668936084070517639877858046, 10.09747146115563845529401779663, 11.21951159901854144230748879624, 12.30602367616515408965396768999, 14.81121561780965504633971341112, 15.22150486309398973929914024332, 16.24599303405132207764714974388