Properties

Label 2-309-1.1-c5-0-68
Degree $2$
Conductor $309$
Sign $-1$
Analytic cond. $49.5586$
Root an. cond. $7.03978$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.12·2-s − 9·3-s + 18.7·4-s + 95.7·5-s + 64.0·6-s + 177.·7-s + 94.5·8-s + 81·9-s − 681.·10-s − 146.·11-s − 168.·12-s − 318.·13-s − 1.26e3·14-s − 861.·15-s − 1.27e3·16-s + 713.·17-s − 576.·18-s − 2.46e3·19-s + 1.79e3·20-s − 1.59e3·21-s + 1.04e3·22-s − 4.99e3·23-s − 851.·24-s + 6.03e3·25-s + 2.27e3·26-s − 729·27-s + 3.32e3·28-s + ⋯
L(s)  = 1  − 1.25·2-s − 0.577·3-s + 0.585·4-s + 1.71·5-s + 0.726·6-s + 1.36·7-s + 0.522·8-s + 0.333·9-s − 2.15·10-s − 0.366·11-s − 0.337·12-s − 0.523·13-s − 1.72·14-s − 0.988·15-s − 1.24·16-s + 0.598·17-s − 0.419·18-s − 1.56·19-s + 1.00·20-s − 0.790·21-s + 0.461·22-s − 1.96·23-s − 0.301·24-s + 1.93·25-s + 0.658·26-s − 0.192·27-s + 0.801·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309\)    =    \(3 \cdot 103\)
Sign: $-1$
Analytic conductor: \(49.5586\)
Root analytic conductor: \(7.03978\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 309,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
103 \( 1 + 1.06e4T \)
good2 \( 1 + 7.12T + 32T^{2} \)
5 \( 1 - 95.7T + 3.12e3T^{2} \)
7 \( 1 - 177.T + 1.68e4T^{2} \)
11 \( 1 + 146.T + 1.61e5T^{2} \)
13 \( 1 + 318.T + 3.71e5T^{2} \)
17 \( 1 - 713.T + 1.41e6T^{2} \)
19 \( 1 + 2.46e3T + 2.47e6T^{2} \)
23 \( 1 + 4.99e3T + 6.43e6T^{2} \)
29 \( 1 - 1.00e3T + 2.05e7T^{2} \)
31 \( 1 + 3.73e3T + 2.86e7T^{2} \)
37 \( 1 + 1.41e4T + 6.93e7T^{2} \)
41 \( 1 + 2.31e3T + 1.15e8T^{2} \)
43 \( 1 - 6.01e3T + 1.47e8T^{2} \)
47 \( 1 + 2.08e4T + 2.29e8T^{2} \)
53 \( 1 + 2.93e4T + 4.18e8T^{2} \)
59 \( 1 + 6.88e3T + 7.14e8T^{2} \)
61 \( 1 - 2.57e4T + 8.44e8T^{2} \)
67 \( 1 + 6.16e4T + 1.35e9T^{2} \)
71 \( 1 + 2.19e4T + 1.80e9T^{2} \)
73 \( 1 - 1.65e4T + 2.07e9T^{2} \)
79 \( 1 + 1.71e4T + 3.07e9T^{2} \)
83 \( 1 - 5.95e4T + 3.93e9T^{2} \)
89 \( 1 + 1.44e4T + 5.58e9T^{2} \)
97 \( 1 - 9.76e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35274807184007281663916077727, −9.589545368140137642525336589234, −8.560399998521169907918200511869, −7.76619100993030581185865945347, −6.51840222253329764768182441924, −5.47840424102433185481919588779, −4.59434173964869346293856512206, −2.01995603547280887134722086211, −1.61514221274238708065047270951, 0, 1.61514221274238708065047270951, 2.01995603547280887134722086211, 4.59434173964869346293856512206, 5.47840424102433185481919588779, 6.51840222253329764768182441924, 7.76619100993030581185865945347, 8.560399998521169907918200511869, 9.589545368140137642525336589234, 10.35274807184007281663916077727

Graph of the $Z$-function along the critical line