L(s) = 1 | + (−1.60 + 1.56i)5-s + (−0.816 − 0.816i)7-s + (−3.94 + 3.94i)11-s + 1.15i·13-s + (2.67 + 3.13i)17-s + 6.31i·19-s + (2.66 + 2.66i)23-s + (0.120 − 4.99i)25-s + (−5.68 − 5.68i)29-s + (−4.61 − 4.61i)31-s + (2.58 + 0.0311i)35-s + (1.62 − 1.62i)37-s + (8.22 − 8.22i)41-s + 6.10·43-s + 10.9i·47-s + ⋯ |
L(s) = 1 | + (−0.715 + 0.698i)5-s + (−0.308 − 0.308i)7-s + (−1.18 + 1.18i)11-s + 0.320i·13-s + (0.649 + 0.760i)17-s + 1.44i·19-s + (0.554 + 0.554i)23-s + (0.0241 − 0.999i)25-s + (−1.05 − 1.05i)29-s + (−0.829 − 0.829i)31-s + (0.436 + 0.00526i)35-s + (0.267 − 0.267i)37-s + (1.28 − 1.28i)41-s + 0.931·43-s + 1.59i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.684 + 0.729i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.684 + 0.729i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.08064782349\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.08064782349\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.60 - 1.56i)T \) |
| 17 | \( 1 + (-2.67 - 3.13i)T \) |
good | 7 | \( 1 + (0.816 + 0.816i)T + 7iT^{2} \) |
| 11 | \( 1 + (3.94 - 3.94i)T - 11iT^{2} \) |
| 13 | \( 1 - 1.15iT - 13T^{2} \) |
| 19 | \( 1 - 6.31iT - 19T^{2} \) |
| 23 | \( 1 + (-2.66 - 2.66i)T + 23iT^{2} \) |
| 29 | \( 1 + (5.68 + 5.68i)T + 29iT^{2} \) |
| 31 | \( 1 + (4.61 + 4.61i)T + 31iT^{2} \) |
| 37 | \( 1 + (-1.62 + 1.62i)T - 37iT^{2} \) |
| 41 | \( 1 + (-8.22 + 8.22i)T - 41iT^{2} \) |
| 43 | \( 1 - 6.10T + 43T^{2} \) |
| 47 | \( 1 - 10.9iT - 47T^{2} \) |
| 53 | \( 1 + 9.43T + 53T^{2} \) |
| 59 | \( 1 + 5.58iT - 59T^{2} \) |
| 61 | \( 1 + (1.64 - 1.64i)T - 61iT^{2} \) |
| 67 | \( 1 + 5.66iT - 67T^{2} \) |
| 71 | \( 1 + (5.49 + 5.49i)T + 71iT^{2} \) |
| 73 | \( 1 + (10.7 - 10.7i)T - 73iT^{2} \) |
| 79 | \( 1 + (-2.42 + 2.42i)T - 79iT^{2} \) |
| 83 | \( 1 - 10.1T + 83T^{2} \) |
| 89 | \( 1 + 14.8T + 89T^{2} \) |
| 97 | \( 1 + (6.19 - 6.19i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.426019705773666937438742632586, −8.052330651455248570508493833229, −7.66216374368175502471064032688, −7.21730195147571790821309175485, −6.11164738474174954457002338107, −5.49903401280001443953352286919, −4.24579469238115675956788721625, −3.80856590649470393463926183917, −2.74580076995349286147434264744, −1.77374217896446162251828645253,
0.02859525812045974161894913560, 1.04472015852361170246691582870, 2.80289869045447876727525354670, 3.18448867058097579824832788818, 4.42716422804136065858475085628, 5.25472898984234399802507645466, 5.66769647197016920288475663814, 6.89133361596676217142610091894, 7.58765727053431805704351061571, 8.240412977815686220552871890451