L(s) = 1 | + (2.19 − 0.417i)5-s + (−3.15 − 3.15i)7-s + (−0.848 + 0.848i)11-s + 5.93i·13-s + (4.07 + 0.639i)17-s + 5.87i·19-s + (−5.63 − 5.63i)23-s + (4.65 − 1.83i)25-s + (1.39 + 1.39i)29-s + (5.11 + 5.11i)31-s + (−8.24 − 5.61i)35-s + (−4.95 + 4.95i)37-s + (−1.70 + 1.70i)41-s − 6.12·43-s − 0.483i·47-s + ⋯ |
L(s) = 1 | + (0.982 − 0.186i)5-s + (−1.19 − 1.19i)7-s + (−0.255 + 0.255i)11-s + 1.64i·13-s + (0.987 + 0.155i)17-s + 1.34i·19-s + (−1.17 − 1.17i)23-s + (0.930 − 0.366i)25-s + (0.259 + 0.259i)29-s + (0.918 + 0.918i)31-s + (−1.39 − 0.948i)35-s + (−0.813 + 0.813i)37-s + (−0.266 + 0.266i)41-s − 0.934·43-s − 0.0705i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.589 - 0.807i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.589 - 0.807i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.592791916\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.592791916\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.19 + 0.417i)T \) |
| 17 | \( 1 + (-4.07 - 0.639i)T \) |
good | 7 | \( 1 + (3.15 + 3.15i)T + 7iT^{2} \) |
| 11 | \( 1 + (0.848 - 0.848i)T - 11iT^{2} \) |
| 13 | \( 1 - 5.93iT - 13T^{2} \) |
| 19 | \( 1 - 5.87iT - 19T^{2} \) |
| 23 | \( 1 + (5.63 + 5.63i)T + 23iT^{2} \) |
| 29 | \( 1 + (-1.39 - 1.39i)T + 29iT^{2} \) |
| 31 | \( 1 + (-5.11 - 5.11i)T + 31iT^{2} \) |
| 37 | \( 1 + (4.95 - 4.95i)T - 37iT^{2} \) |
| 41 | \( 1 + (1.70 - 1.70i)T - 41iT^{2} \) |
| 43 | \( 1 + 6.12T + 43T^{2} \) |
| 47 | \( 1 + 0.483iT - 47T^{2} \) |
| 53 | \( 1 - 12.4T + 53T^{2} \) |
| 59 | \( 1 - 3.16iT - 59T^{2} \) |
| 61 | \( 1 + (-1.38 + 1.38i)T - 61iT^{2} \) |
| 67 | \( 1 + 1.11iT - 67T^{2} \) |
| 71 | \( 1 + (-4.05 - 4.05i)T + 71iT^{2} \) |
| 73 | \( 1 + (0.756 - 0.756i)T - 73iT^{2} \) |
| 79 | \( 1 + (5.54 - 5.54i)T - 79iT^{2} \) |
| 83 | \( 1 - 15.7T + 83T^{2} \) |
| 89 | \( 1 + 10.6T + 89T^{2} \) |
| 97 | \( 1 + (-10.3 + 10.3i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.867841931444168000563482213798, −8.151333461796102813554912783473, −7.06453906092609453786606408776, −6.56833283848783454995502714717, −6.01090258192854083125871567266, −4.91832658166897872272831963521, −4.07648669331832906789227848674, −3.31351647083475372158889656722, −2.11463148521374778747916152682, −1.13942053133217804523679462614,
0.52941497668344670358018141093, 2.16712330002430815024563793713, 2.89810705007453584583553046695, 3.49058415699955192328249301953, 5.11970425654708574935894550857, 5.67673078642431250237961802515, 6.06509168309044453518193968387, 6.99795238660176360724521598946, 7.912363240840623859488579573504, 8.713401770992027863414243975383