L(s) = 1 | + (−2.23 − 0.0136i)5-s + (2.94 + 2.94i)7-s + (−0.611 + 0.611i)11-s − 4.50i·13-s + (0.812 − 4.04i)17-s + 1.08i·19-s + (−3.36 − 3.36i)23-s + (4.99 + 0.0609i)25-s + (2.76 + 2.76i)29-s + (−5.07 − 5.07i)31-s + (−6.54 − 6.63i)35-s + (−5.04 + 5.04i)37-s + (0.0629 − 0.0629i)41-s + 2.40·43-s − 10.9i·47-s + ⋯ |
L(s) = 1 | + (−0.999 − 0.00609i)5-s + (1.11 + 1.11i)7-s + (−0.184 + 0.184i)11-s − 1.24i·13-s + (0.197 − 0.980i)17-s + 0.247i·19-s + (−0.700 − 0.700i)23-s + (0.999 + 0.0121i)25-s + (0.513 + 0.513i)29-s + (−0.911 − 0.911i)31-s + (−1.10 − 1.12i)35-s + (−0.828 + 0.828i)37-s + (0.00983 − 0.00983i)41-s + 0.366·43-s − 1.59i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.646 + 0.762i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.646 + 0.762i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.409189726\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.409189726\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.23 + 0.0136i)T \) |
| 17 | \( 1 + (-0.812 + 4.04i)T \) |
good | 7 | \( 1 + (-2.94 - 2.94i)T + 7iT^{2} \) |
| 11 | \( 1 + (0.611 - 0.611i)T - 11iT^{2} \) |
| 13 | \( 1 + 4.50iT - 13T^{2} \) |
| 19 | \( 1 - 1.08iT - 19T^{2} \) |
| 23 | \( 1 + (3.36 + 3.36i)T + 23iT^{2} \) |
| 29 | \( 1 + (-2.76 - 2.76i)T + 29iT^{2} \) |
| 31 | \( 1 + (5.07 + 5.07i)T + 31iT^{2} \) |
| 37 | \( 1 + (5.04 - 5.04i)T - 37iT^{2} \) |
| 41 | \( 1 + (-0.0629 + 0.0629i)T - 41iT^{2} \) |
| 43 | \( 1 - 2.40T + 43T^{2} \) |
| 47 | \( 1 + 10.9iT - 47T^{2} \) |
| 53 | \( 1 - 5.66T + 53T^{2} \) |
| 59 | \( 1 - 9.96iT - 59T^{2} \) |
| 61 | \( 1 + (-9.25 + 9.25i)T - 61iT^{2} \) |
| 67 | \( 1 + 10.7iT - 67T^{2} \) |
| 71 | \( 1 + (3.49 + 3.49i)T + 71iT^{2} \) |
| 73 | \( 1 + (3.31 - 3.31i)T - 73iT^{2} \) |
| 79 | \( 1 + (-10.2 + 10.2i)T - 79iT^{2} \) |
| 83 | \( 1 + 1.08T + 83T^{2} \) |
| 89 | \( 1 - 15.1T + 89T^{2} \) |
| 97 | \( 1 + (-9.80 + 9.80i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.514987630008546001231354700943, −7.87936106773979992780734506428, −7.40863738055794373820222607784, −6.29963189751625939764102583135, −5.22828878450671946867543189902, −5.00600505952009166694015347144, −3.85389084490158123083646603536, −2.92164283231941209058644562627, −2.01373237987394981062882517661, −0.52421759057393296186967969066,
1.03955983658712099667100053126, 2.03374958899250216676913339187, 3.54841791900516324948147349193, 4.10895819667236056750976183665, 4.70650443086116597818718897524, 5.70764634490653316394210720913, 6.85789445122674296591009870200, 7.33389528109399181715917840559, 8.062617320666585618698793674459, 8.575928429306951891746962103875