L(s) = 1 | + (−2.12 − 0.707i)5-s + (2 − 2i)7-s − 2.82i·11-s + (3 + 3i)13-s + (−0.707 − 0.707i)17-s + 4i·19-s + (3.99 + 3i)25-s + 7.07·29-s + (−5.65 + 2.82i)35-s + (1 − i)37-s − 7.07i·41-s + (4 + 4i)43-s + (−2.82 − 2.82i)47-s − i·49-s + (7.07 − 7.07i)53-s + ⋯ |
L(s) = 1 | + (−0.948 − 0.316i)5-s + (0.755 − 0.755i)7-s − 0.852i·11-s + (0.832 + 0.832i)13-s + (−0.171 − 0.171i)17-s + 0.917i·19-s + (0.799 + 0.600i)25-s + 1.31·29-s + (−0.956 + 0.478i)35-s + (0.164 − 0.164i)37-s − 1.10i·41-s + (0.609 + 0.609i)43-s + (−0.412 − 0.412i)47-s − 0.142i·49-s + (0.971 − 0.971i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.501 + 0.865i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.501 + 0.865i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.667967335\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.667967335\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.12 + 0.707i)T \) |
| 17 | \( 1 + (0.707 + 0.707i)T \) |
good | 7 | \( 1 + (-2 + 2i)T - 7iT^{2} \) |
| 11 | \( 1 + 2.82iT - 11T^{2} \) |
| 13 | \( 1 + (-3 - 3i)T + 13iT^{2} \) |
| 19 | \( 1 - 4iT - 19T^{2} \) |
| 23 | \( 1 - 23iT^{2} \) |
| 29 | \( 1 - 7.07T + 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + (-1 + i)T - 37iT^{2} \) |
| 41 | \( 1 + 7.07iT - 41T^{2} \) |
| 43 | \( 1 + (-4 - 4i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.82 + 2.82i)T + 47iT^{2} \) |
| 53 | \( 1 + (-7.07 + 7.07i)T - 53iT^{2} \) |
| 59 | \( 1 - 2.82T + 59T^{2} \) |
| 61 | \( 1 + 8T + 61T^{2} \) |
| 67 | \( 1 + (-4 + 4i)T - 67iT^{2} \) |
| 71 | \( 1 - 11.3iT - 71T^{2} \) |
| 73 | \( 1 + (5 + 5i)T + 73iT^{2} \) |
| 79 | \( 1 + 16iT - 79T^{2} \) |
| 83 | \( 1 + (2.82 - 2.82i)T - 83iT^{2} \) |
| 89 | \( 1 + 9.89T + 89T^{2} \) |
| 97 | \( 1 + (-7 + 7i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.494992431319923720022501478441, −7.946318288441165862055064347849, −7.19698623259019475677496231250, −6.39968924579600577820600613632, −5.46992457113591420839221589380, −4.46314918521144048886711114245, −4.00235929440911112916264515594, −3.14112312636089682738073086195, −1.64153146038753571240599965746, −0.67033532155085308289916729493,
1.02002415199494668980626826559, 2.37641950272014535199230403190, 3.15647022772278214409298145686, 4.27408833413453565298402678813, 4.83644855746088462028831789794, 5.77432336654005273476928172637, 6.67624197784515055100676582603, 7.40241082098405256444446042564, 8.228944884840597198618670969553, 8.551750877201552921536275402069