Properties

Label 2-3060-1.1-c1-0-13
Degree $2$
Conductor $3060$
Sign $1$
Analytic cond. $24.4342$
Root an. cond. $4.94309$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 3.37·7-s + 1.37·11-s + 2·13-s + 17-s + 3.37·19-s + 2.74·23-s + 25-s − 1.37·29-s + 2·31-s − 3.37·35-s − 8.11·37-s − 1.37·41-s − 0.744·43-s + 1.37·47-s + 4.37·49-s − 1.37·53-s − 1.37·55-s + 2·61-s − 2·65-s + 4.74·67-s + 8.74·71-s + 12.1·73-s + 4.62·77-s + 2·79-s − 8.74·83-s − 85-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.27·7-s + 0.413·11-s + 0.554·13-s + 0.242·17-s + 0.773·19-s + 0.572·23-s + 0.200·25-s − 0.254·29-s + 0.359·31-s − 0.570·35-s − 1.33·37-s − 0.214·41-s − 0.113·43-s + 0.200·47-s + 0.624·49-s − 0.188·53-s − 0.185·55-s + 0.256·61-s − 0.248·65-s + 0.579·67-s + 1.03·71-s + 1.41·73-s + 0.527·77-s + 0.225·79-s − 0.959·83-s − 0.108·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3060\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(24.4342\)
Root analytic conductor: \(4.94309\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3060,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.205940537\)
\(L(\frac12)\) \(\approx\) \(2.205940537\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 - 3.37T + 7T^{2} \)
11 \( 1 - 1.37T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
19 \( 1 - 3.37T + 19T^{2} \)
23 \( 1 - 2.74T + 23T^{2} \)
29 \( 1 + 1.37T + 29T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 + 8.11T + 37T^{2} \)
41 \( 1 + 1.37T + 41T^{2} \)
43 \( 1 + 0.744T + 43T^{2} \)
47 \( 1 - 1.37T + 47T^{2} \)
53 \( 1 + 1.37T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 - 4.74T + 67T^{2} \)
71 \( 1 - 8.74T + 71T^{2} \)
73 \( 1 - 12.1T + 73T^{2} \)
79 \( 1 - 2T + 79T^{2} \)
83 \( 1 + 8.74T + 83T^{2} \)
89 \( 1 - 3.25T + 89T^{2} \)
97 \( 1 + 15.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.568301564559790888091049261284, −8.038141049834676860438271498125, −7.29995065947815300889848273884, −6.55913286945837621252001546086, −5.46564203922724869278780694628, −4.91345411169326549668973905911, −3.99185750978006879703160537403, −3.20667147255068633574649695099, −1.90526923566986965213755877380, −0.970128666782423077784489691372, 0.970128666782423077784489691372, 1.90526923566986965213755877380, 3.20667147255068633574649695099, 3.99185750978006879703160537403, 4.91345411169326549668973905911, 5.46564203922724869278780694628, 6.55913286945837621252001546086, 7.29995065947815300889848273884, 8.038141049834676860438271498125, 8.568301564559790888091049261284

Graph of the $Z$-function along the critical line