Properties

Label 16-3060e8-1.1-c0e8-0-8
Degree $16$
Conductor $7.687\times 10^{27}$
Sign $1$
Analytic cond. $29.5820$
Root an. cond. $1.23577$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·29-s − 8·53-s + 8·73-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯
L(s)  = 1  − 8·29-s − 8·53-s + 8·73-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 17^{8}\)
Sign: $1$
Analytic conductor: \(29.5820\)
Root analytic conductor: \(1.23577\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 17^{8} ,\ ( \ : [0]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9681592396\)
\(L(\frac12)\) \(\approx\) \(0.9681592396\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T^{8} \)
3 \( 1 \)
5 \( 1 + T^{8} \)
17 \( ( 1 + T^{4} )^{2} \)
good7 \( 1 + T^{16} \)
11 \( 1 + T^{16} \)
13 \( ( 1 + T^{8} )^{2} \)
19 \( ( 1 + T^{8} )^{2} \)
23 \( 1 + T^{16} \)
29 \( ( 1 + T )^{8}( 1 + T^{8} ) \)
31 \( 1 + T^{16} \)
37 \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \)
41 \( ( 1 + T^{2} )^{4}( 1 + T^{8} ) \)
43 \( ( 1 + T^{8} )^{2} \)
47 \( ( 1 - T )^{8}( 1 + T )^{8} \)
53 \( ( 1 + T )^{8}( 1 + T^{4} )^{2} \)
59 \( ( 1 + T^{8} )^{2} \)
61 \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \)
67 \( ( 1 + T^{4} )^{4} \)
71 \( 1 + T^{16} \)
73 \( ( 1 - T )^{8}( 1 + T^{8} ) \)
79 \( 1 + T^{16} \)
83 \( ( 1 + T^{8} )^{2} \)
89 \( ( 1 + T^{8} )^{2} \)
97 \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.98481383930466882922556282336, −3.44510155467515789533213664601, −3.41146852683877591599247077537, −3.38818298906312690017458328124, −3.37963004911583003169785342440, −3.34149881566140933994300280591, −3.28560208209169558538200393017, −3.24866189831341189291759586131, −3.14992827310433746175800624766, −2.59813650817866102043056173567, −2.51976408056421402841625587788, −2.43286156854930447237044888127, −2.37688967748981707911616981770, −2.23212931891974965047067550096, −2.19653195236309198564620768210, −1.86250414714494989085157435507, −1.73304213756173199190955026389, −1.65936968652517644180336779397, −1.62782347665423804018228569768, −1.57835454000680345116078024617, −1.50068695231121798881048538261, −1.11664830255080215145660460918, −0.63586919680076309071024418276, −0.59182908588596048626385404265, −0.37332022324572952706584745994, 0.37332022324572952706584745994, 0.59182908588596048626385404265, 0.63586919680076309071024418276, 1.11664830255080215145660460918, 1.50068695231121798881048538261, 1.57835454000680345116078024617, 1.62782347665423804018228569768, 1.65936968652517644180336779397, 1.73304213756173199190955026389, 1.86250414714494989085157435507, 2.19653195236309198564620768210, 2.23212931891974965047067550096, 2.37688967748981707911616981770, 2.43286156854930447237044888127, 2.51976408056421402841625587788, 2.59813650817866102043056173567, 3.14992827310433746175800624766, 3.24866189831341189291759586131, 3.28560208209169558538200393017, 3.34149881566140933994300280591, 3.37963004911583003169785342440, 3.38818298906312690017458328124, 3.41146852683877591599247077537, 3.44510155467515789533213664601, 3.98481383930466882922556282336

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.