Properties

Label 2-3042-13.12-c1-0-13
Degree $2$
Conductor $3042$
Sign $0.554 - 0.832i$
Analytic cond. $24.2904$
Root an. cond. $4.92853$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + 2.16i·5-s − 3.16i·7-s + i·8-s + 2.16·10-s + 5.16i·11-s − 3.16·14-s + 16-s + 3·17-s − 1.16i·19-s − 2.16i·20-s + 5.16·22-s − 0.837·23-s + 0.324·25-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 0.966i·5-s − 1.19i·7-s + 0.353i·8-s + 0.683·10-s + 1.55i·11-s − 0.845·14-s + 0.250·16-s + 0.727·17-s − 0.266i·19-s − 0.483i·20-s + 1.10·22-s − 0.174·23-s + 0.0649·25-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.554 - 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.554 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3042\)    =    \(2 \cdot 3^{2} \cdot 13^{2}\)
Sign: $0.554 - 0.832i$
Analytic conductor: \(24.2904\)
Root analytic conductor: \(4.92853\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3042} (1351, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3042,\ (\ :1/2),\ 0.554 - 0.832i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.233366396\)
\(L(\frac12)\) \(\approx\) \(1.233366396\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 - 2.16iT - 5T^{2} \)
7 \( 1 + 3.16iT - 7T^{2} \)
11 \( 1 - 5.16iT - 11T^{2} \)
17 \( 1 - 3T + 17T^{2} \)
19 \( 1 + 1.16iT - 19T^{2} \)
23 \( 1 + 0.837T + 23T^{2} \)
29 \( 1 + 8.16T + 29T^{2} \)
31 \( 1 + 6.32iT - 31T^{2} \)
37 \( 1 - 10.1iT - 37T^{2} \)
41 \( 1 + 3iT - 41T^{2} \)
43 \( 1 + 2.83T + 43T^{2} \)
47 \( 1 - 11.1iT - 47T^{2} \)
53 \( 1 - 6.48T + 53T^{2} \)
59 \( 1 - 10.3iT - 59T^{2} \)
61 \( 1 + 6.16T + 61T^{2} \)
67 \( 1 - 9.16iT - 67T^{2} \)
71 \( 1 - 0.837iT - 71T^{2} \)
73 \( 1 + iT - 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 + 15.4iT - 83T^{2} \)
89 \( 1 - 12iT - 89T^{2} \)
97 \( 1 - 4iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.095577177813343082869473765466, −7.84520911212441590777769156287, −7.38092741177930270009359141922, −6.79730687128966345324469992783, −5.76296167729791885818461369837, −4.64682888394321035655810921003, −4.06410327303661030201922450311, −3.19669583111367030557790752152, −2.27522948665357110017015606699, −1.21199402775712060648801083768, 0.41692679408755152566818021188, 1.73445627843887888560621912941, 3.10715618935577854971358166942, 3.90631696916712906654704285028, 5.16923052781664740994861025789, 5.50910888211699392465290536662, 6.07902603530877703420910726567, 7.11825044254590252642554573712, 8.095834159115059504121811338449, 8.572871632172277478795564565931

Graph of the $Z$-function along the critical line