Properties

Label 2-3040-8.5-c1-0-57
Degree $2$
Conductor $3040$
Sign $-0.375 + 0.927i$
Analytic cond. $24.2745$
Root an. cond. $4.92691$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.71i·3-s i·5-s + 2.02·7-s + 0.0697·9-s − 4.96i·11-s + 2.57i·13-s − 1.71·15-s + 7.49·17-s i·19-s − 3.46i·21-s − 2.35·23-s − 25-s − 5.25i·27-s − 4.27i·29-s − 0.942·31-s + ⋯
L(s)  = 1  − 0.988i·3-s − 0.447i·5-s + 0.766·7-s + 0.0232·9-s − 1.49i·11-s + 0.712i·13-s − 0.441·15-s + 1.81·17-s − 0.229i·19-s − 0.757i·21-s − 0.490·23-s − 0.200·25-s − 1.01i·27-s − 0.793i·29-s − 0.169·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.375 + 0.927i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.375 + 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3040\)    =    \(2^{5} \cdot 5 \cdot 19\)
Sign: $-0.375 + 0.927i$
Analytic conductor: \(24.2745\)
Root analytic conductor: \(4.92691\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3040} (1521, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3040,\ (\ :1/2),\ -0.375 + 0.927i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.236555281\)
\(L(\frac12)\) \(\approx\) \(2.236555281\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + iT \)
19 \( 1 + iT \)
good3 \( 1 + 1.71iT - 3T^{2} \)
7 \( 1 - 2.02T + 7T^{2} \)
11 \( 1 + 4.96iT - 11T^{2} \)
13 \( 1 - 2.57iT - 13T^{2} \)
17 \( 1 - 7.49T + 17T^{2} \)
23 \( 1 + 2.35T + 23T^{2} \)
29 \( 1 + 4.27iT - 29T^{2} \)
31 \( 1 + 0.942T + 31T^{2} \)
37 \( 1 - 6.80iT - 37T^{2} \)
41 \( 1 - 8.12T + 41T^{2} \)
43 \( 1 + 0.842iT - 43T^{2} \)
47 \( 1 - 10.5T + 47T^{2} \)
53 \( 1 - 4.76iT - 53T^{2} \)
59 \( 1 - 2.77iT - 59T^{2} \)
61 \( 1 - 2.46iT - 61T^{2} \)
67 \( 1 + 5.12iT - 67T^{2} \)
71 \( 1 + 1.96T + 71T^{2} \)
73 \( 1 - 10.2T + 73T^{2} \)
79 \( 1 - 4.50T + 79T^{2} \)
83 \( 1 + 8.77iT - 83T^{2} \)
89 \( 1 + 0.178T + 89T^{2} \)
97 \( 1 + 11.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.168547842612060965230862872304, −7.913006930059928492211526440601, −7.11095346751833749392279456098, −6.09260232743576301259348276175, −5.66807730463331133501376487084, −4.61203503802309700632607772600, −3.72547596810493675742744179744, −2.60083783938663412686798824188, −1.47324854975775740640917870164, −0.806828364774522701956059716735, 1.34205933310670619326397788922, 2.46588827108240895596600521812, 3.60932629652211010926807516548, 4.19009092360566309823883207979, 5.16076670835367646250373566315, 5.55233850780488959268874156054, 6.81934089983473741442170144952, 7.64099513784331575541289682719, 7.971318801003839469691758880686, 9.259681902619083151426077316716

Graph of the $Z$-function along the critical line