| L(s) = 1 | − 2.02i·3-s − i·5-s − 1.28·7-s − 1.09·9-s − 2.17i·11-s − 0.732i·13-s − 2.02·15-s − 0.143·17-s − i·19-s + 2.59i·21-s + 0.625·23-s − 25-s − 3.85i·27-s − 6.12i·29-s + 2.33·31-s + ⋯ |
| L(s) = 1 | − 1.16i·3-s − 0.447i·5-s − 0.485·7-s − 0.365·9-s − 0.654i·11-s − 0.203i·13-s − 0.522·15-s − 0.0346·17-s − 0.229i·19-s + 0.567i·21-s + 0.130·23-s − 0.200·25-s − 0.741i·27-s − 1.13i·29-s + 0.419·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.920 - 0.391i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.920 - 0.391i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.019336781\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.019336781\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 19 | \( 1 + iT \) |
| good | 3 | \( 1 + 2.02iT - 3T^{2} \) |
| 7 | \( 1 + 1.28T + 7T^{2} \) |
| 11 | \( 1 + 2.17iT - 11T^{2} \) |
| 13 | \( 1 + 0.732iT - 13T^{2} \) |
| 17 | \( 1 + 0.143T + 17T^{2} \) |
| 23 | \( 1 - 0.625T + 23T^{2} \) |
| 29 | \( 1 + 6.12iT - 29T^{2} \) |
| 31 | \( 1 - 2.33T + 31T^{2} \) |
| 37 | \( 1 + 2.46iT - 37T^{2} \) |
| 41 | \( 1 + 1.52T + 41T^{2} \) |
| 43 | \( 1 - 5.44iT - 43T^{2} \) |
| 47 | \( 1 + 9.83T + 47T^{2} \) |
| 53 | \( 1 + 11.2iT - 53T^{2} \) |
| 59 | \( 1 - 0.188iT - 59T^{2} \) |
| 61 | \( 1 - 6.59iT - 61T^{2} \) |
| 67 | \( 1 - 1.58iT - 67T^{2} \) |
| 71 | \( 1 + 8.09T + 71T^{2} \) |
| 73 | \( 1 + 4.18T + 73T^{2} \) |
| 79 | \( 1 + 1.57T + 79T^{2} \) |
| 83 | \( 1 - 5.97iT - 83T^{2} \) |
| 89 | \( 1 - 12.5T + 89T^{2} \) |
| 97 | \( 1 - 3.88T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.119121046138345440059157968809, −7.66162574868059335006549846167, −6.65571570275533596831784017372, −6.26960496261216413416539794915, −5.37089002832250943542521270736, −4.39504784496627841973227152815, −3.33953727131298764035455517272, −2.39117526442340074099292410340, −1.32913775337826743045594455888, −0.32314334289394338530212714595,
1.66349097307542143509662647400, 2.96570117550762875390159895089, 3.59672072513869448343005309060, 4.50835641992061331058625760573, 5.08090399860453310638972264380, 6.11746981895916200484284245363, 6.86639636823378288147137383892, 7.56845511784018525304514473734, 8.612593386575021546027815419515, 9.296386137569350914504835833500