Properties

Label 2-3040-8.5-c1-0-2
Degree $2$
Conductor $3040$
Sign $0.396 - 0.918i$
Analytic cond. $24.2745$
Root an. cond. $4.92691$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.48i·3-s + i·5-s − 3.58·7-s − 3.19·9-s − 4.71i·11-s + 0.957i·13-s + 2.48·15-s − 1.56·17-s + i·19-s + 8.92i·21-s + 2.80·23-s − 25-s + 0.475i·27-s + 5.01i·29-s − 7.59·31-s + ⋯
L(s)  = 1  − 1.43i·3-s + 0.447i·5-s − 1.35·7-s − 1.06·9-s − 1.42i·11-s + 0.265i·13-s + 0.642·15-s − 0.380·17-s + 0.229i·19-s + 1.94i·21-s + 0.584·23-s − 0.200·25-s + 0.0914i·27-s + 0.931i·29-s − 1.36·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.396 - 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.396 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3040\)    =    \(2^{5} \cdot 5 \cdot 19\)
Sign: $0.396 - 0.918i$
Analytic conductor: \(24.2745\)
Root analytic conductor: \(4.92691\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3040} (1521, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3040,\ (\ :1/2),\ 0.396 - 0.918i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3198701804\)
\(L(\frac12)\) \(\approx\) \(0.3198701804\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - iT \)
19 \( 1 - iT \)
good3 \( 1 + 2.48iT - 3T^{2} \)
7 \( 1 + 3.58T + 7T^{2} \)
11 \( 1 + 4.71iT - 11T^{2} \)
13 \( 1 - 0.957iT - 13T^{2} \)
17 \( 1 + 1.56T + 17T^{2} \)
23 \( 1 - 2.80T + 23T^{2} \)
29 \( 1 - 5.01iT - 29T^{2} \)
31 \( 1 + 7.59T + 31T^{2} \)
37 \( 1 + 5.75iT - 37T^{2} \)
41 \( 1 + 7.37T + 41T^{2} \)
43 \( 1 - 2.12iT - 43T^{2} \)
47 \( 1 + 1.55T + 47T^{2} \)
53 \( 1 + 0.106iT - 53T^{2} \)
59 \( 1 - 13.4iT - 59T^{2} \)
61 \( 1 - 5.34iT - 61T^{2} \)
67 \( 1 - 6.87iT - 67T^{2} \)
71 \( 1 + 1.82T + 71T^{2} \)
73 \( 1 - 15.0T + 73T^{2} \)
79 \( 1 - 6.24T + 79T^{2} \)
83 \( 1 - 9.57iT - 83T^{2} \)
89 \( 1 - 17.1T + 89T^{2} \)
97 \( 1 + 7.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.825418479935009069205011092140, −7.983062151781617226862363093465, −7.11440937093689015645787474738, −6.72084098730635242104033195585, −6.07509304400320668178061492229, −5.39948560585971291768165645117, −3.78443429409317958024786209850, −3.14164710429558548511299078618, −2.27517956167084614431922414414, −1.04902006034451765988178825937, 0.10999631613795843799153909006, 2.02962999103101686974848829208, 3.23941114765170429460692012466, 3.81635915918968048371936562548, 4.76761084391335443884047511868, 5.16132981357008729067517128952, 6.30301392554650349770524710098, 6.95668546328314901977986479312, 7.929812517828139814120285266227, 8.970819983451015950261269749305

Graph of the $Z$-function along the critical line