| L(s) = 1 | + 1.53i·3-s + i·5-s + 0.194·7-s + 0.650·9-s − 5.33i·11-s + 0.412i·13-s − 1.53·15-s − 1.18·17-s + i·19-s + 0.298i·21-s − 7.83·23-s − 25-s + 5.59i·27-s + 2.58i·29-s − 0.174·31-s + ⋯ |
| L(s) = 1 | + 0.884i·3-s + 0.447i·5-s + 0.0736·7-s + 0.216·9-s − 1.60i·11-s + 0.114i·13-s − 0.395·15-s − 0.288·17-s + 0.229i·19-s + 0.0651i·21-s − 1.63·23-s − 0.200·25-s + 1.07i·27-s + 0.480i·29-s − 0.0312·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.805 - 0.593i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.805 - 0.593i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.256491090\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.256491090\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 19 | \( 1 - iT \) |
| good | 3 | \( 1 - 1.53iT - 3T^{2} \) |
| 7 | \( 1 - 0.194T + 7T^{2} \) |
| 11 | \( 1 + 5.33iT - 11T^{2} \) |
| 13 | \( 1 - 0.412iT - 13T^{2} \) |
| 17 | \( 1 + 1.18T + 17T^{2} \) |
| 23 | \( 1 + 7.83T + 23T^{2} \) |
| 29 | \( 1 - 2.58iT - 29T^{2} \) |
| 31 | \( 1 + 0.174T + 31T^{2} \) |
| 37 | \( 1 - 11.1iT - 37T^{2} \) |
| 41 | \( 1 - 5.96T + 41T^{2} \) |
| 43 | \( 1 - 11.2iT - 43T^{2} \) |
| 47 | \( 1 + 6.77T + 47T^{2} \) |
| 53 | \( 1 + 4.93iT - 53T^{2} \) |
| 59 | \( 1 - 12.0iT - 59T^{2} \) |
| 61 | \( 1 - 11.5iT - 61T^{2} \) |
| 67 | \( 1 - 7.53iT - 67T^{2} \) |
| 71 | \( 1 - 13.1T + 71T^{2} \) |
| 73 | \( 1 - 0.911T + 73T^{2} \) |
| 79 | \( 1 - 0.990T + 79T^{2} \) |
| 83 | \( 1 + 2.93iT - 83T^{2} \) |
| 89 | \( 1 - 6.49T + 89T^{2} \) |
| 97 | \( 1 + 4.64T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.031169519297865566286723064511, −8.322088946865211816313472827187, −7.68093088601441680820622948092, −6.54407563942647270518446947296, −6.04377987620735315607459384729, −5.10938114535882186757817904641, −4.23693857737482708234077517223, −3.53556754415382859091455430441, −2.75114375632896294440094961696, −1.33585126253459244880906368411,
0.39073379336118009350913321690, 1.87787739457846561079725063513, 2.14815074293538066614566279529, 3.80980676580924258336992635249, 4.49508162412747018161146348149, 5.34547394369099411086336663919, 6.34753783490000215585902110469, 6.93995577807788212993321259295, 7.76802621701221037567140933812, 8.070538402612714436704554756947