Properties

Label 2-3040-8.5-c1-0-68
Degree $2$
Conductor $3040$
Sign $-0.871 + 0.491i$
Analytic cond. $24.2745$
Root an. cond. $4.92691$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.496i·3-s i·5-s − 1.35·7-s + 2.75·9-s − 5.74i·11-s − 7.05i·13-s + 0.496·15-s − 1.74·17-s i·19-s − 0.671i·21-s − 0.0940·23-s − 25-s + 2.85i·27-s + 6.87i·29-s − 5.35·31-s + ⋯
L(s)  = 1  + 0.286i·3-s − 0.447i·5-s − 0.511·7-s + 0.917·9-s − 1.73i·11-s − 1.95i·13-s + 0.128·15-s − 0.423·17-s − 0.229i·19-s − 0.146i·21-s − 0.0196·23-s − 0.200·25-s + 0.549i·27-s + 1.27i·29-s − 0.962·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.871 + 0.491i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.871 + 0.491i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3040\)    =    \(2^{5} \cdot 5 \cdot 19\)
Sign: $-0.871 + 0.491i$
Analytic conductor: \(24.2745\)
Root analytic conductor: \(4.92691\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3040} (1521, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3040,\ (\ :1/2),\ -0.871 + 0.491i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9652031177\)
\(L(\frac12)\) \(\approx\) \(0.9652031177\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + iT \)
19 \( 1 + iT \)
good3 \( 1 - 0.496iT - 3T^{2} \)
7 \( 1 + 1.35T + 7T^{2} \)
11 \( 1 + 5.74iT - 11T^{2} \)
13 \( 1 + 7.05iT - 13T^{2} \)
17 \( 1 + 1.74T + 17T^{2} \)
23 \( 1 + 0.0940T + 23T^{2} \)
29 \( 1 - 6.87iT - 29T^{2} \)
31 \( 1 + 5.35T + 31T^{2} \)
37 \( 1 + 3.03iT - 37T^{2} \)
41 \( 1 + 11.9T + 41T^{2} \)
43 \( 1 - 2.45iT - 43T^{2} \)
47 \( 1 - 0.916T + 47T^{2} \)
53 \( 1 - 5.92iT - 53T^{2} \)
59 \( 1 - 12.3iT - 59T^{2} \)
61 \( 1 - 11.8iT - 61T^{2} \)
67 \( 1 + 6.31iT - 67T^{2} \)
71 \( 1 + 14.2T + 71T^{2} \)
73 \( 1 - 10.1T + 73T^{2} \)
79 \( 1 + 6.72T + 79T^{2} \)
83 \( 1 + 17.9iT - 83T^{2} \)
89 \( 1 - 4.99T + 89T^{2} \)
97 \( 1 + 9.61T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.588175718852576303184653570235, −7.69314544638651085572453547110, −6.95617420961123914223765585734, −5.89563030062499920532799179660, −5.46435203506626533917126176821, −4.51796578560390359528756050265, −3.42332975024635741314008082028, −3.03538742893014921733554472395, −1.38426322890929111964750739562, −0.29634173332866620875347153322, 1.79106219336287187725910823881, 2.11136511169959825366114827787, 3.63746193366031336039986652532, 4.32237627970635443574212095741, 5.00839896473497403880890423044, 6.46423027006615656586671112331, 6.74531614634667395476634053135, 7.28185428740206453174166287268, 8.166478960666273989453150145493, 9.278781703405510561572352388931

Graph of the $Z$-function along the critical line