| L(s) = 1 | − 11.4i·3-s − 9.10·5-s − 75.9·7-s − 49.6·9-s − 149.·11-s + 188. i·13-s + 104. i·15-s + 322.·17-s + (349. − 89.0i)19-s + 867. i·21-s + 561.·23-s − 542.·25-s − 358. i·27-s + 260. i·29-s + 167. i·31-s + ⋯ |
| L(s) = 1 | − 1.27i·3-s − 0.364·5-s − 1.54·7-s − 0.612·9-s − 1.23·11-s + 1.11i·13-s + 0.462i·15-s + 1.11·17-s + (0.969 − 0.246i)19-s + 1.96i·21-s + 1.06·23-s − 0.867·25-s − 0.491i·27-s + 0.310i·29-s + 0.174i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.969 - 0.246i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.969 - 0.246i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{5}{2})\) |
\(\approx\) |
\(0.9357886735\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9357886735\) |
| \(L(3)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 19 | \( 1 + (-349. + 89.0i)T \) |
| good | 3 | \( 1 + 11.4iT - 81T^{2} \) |
| 5 | \( 1 + 9.10T + 625T^{2} \) |
| 7 | \( 1 + 75.9T + 2.40e3T^{2} \) |
| 11 | \( 1 + 149.T + 1.46e4T^{2} \) |
| 13 | \( 1 - 188. iT - 2.85e4T^{2} \) |
| 17 | \( 1 - 322.T + 8.35e4T^{2} \) |
| 23 | \( 1 - 561.T + 2.79e5T^{2} \) |
| 29 | \( 1 - 260. iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 167. iT - 9.23e5T^{2} \) |
| 37 | \( 1 + 1.80e3iT - 1.87e6T^{2} \) |
| 41 | \( 1 - 1.42e3iT - 2.82e6T^{2} \) |
| 43 | \( 1 + 836.T + 3.41e6T^{2} \) |
| 47 | \( 1 + 1.08e3T + 4.87e6T^{2} \) |
| 53 | \( 1 - 4.33e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 + 5.83e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 - 5.51e3T + 1.38e7T^{2} \) |
| 67 | \( 1 - 3.10e3iT - 2.01e7T^{2} \) |
| 71 | \( 1 - 5.92e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 - 2.35e3T + 2.83e7T^{2} \) |
| 79 | \( 1 - 8.36e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 - 1.10e4T + 4.74e7T^{2} \) |
| 89 | \( 1 - 834. iT - 6.27e7T^{2} \) |
| 97 | \( 1 + 2.25e3iT - 8.85e7T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36195705568999635408301723596, −10.06356259911745310011318804763, −9.274411610623919507895038847813, −7.928398346140195954151604765453, −7.21788822989331951736708727556, −6.46577302054230501100136933304, −5.32820350678161635530408532923, −3.56826082034593241454489227355, −2.48629833489687779417666047999, −0.902287291979255123869243762453,
0.37775298993572420015611913539, 3.07906490348259270646405101400, 3.49573252392588944238686920390, 5.02225689271862662551491741060, 5.78182303050479014941417666381, 7.25924566183823888818052915785, 8.242468603856203285897702472137, 9.604317491661543515757177042744, 9.995796665904167369763028744626, 10.68163553667865182588325934265