Properties

Label 2-55e2-1.1-c1-0-126
Degree $2$
Conductor $3025$
Sign $-1$
Analytic cond. $24.1547$
Root an. cond. $4.91474$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.67·2-s + 3.10·3-s + 0.795·4-s − 5.19·6-s − 3.08·7-s + 2.01·8-s + 6.67·9-s + 2.47·12-s − 3.37·13-s + 5.16·14-s − 4.95·16-s − 0.103·17-s − 11.1·18-s + 2.03·19-s − 9.60·21-s − 2.23·23-s + 6.26·24-s + 5.64·26-s + 11.4·27-s − 2.45·28-s − 6.49·29-s − 9.07·31-s + 4.26·32-s + 0.173·34-s + 5.30·36-s + 0.333·37-s − 3.39·38-s + ⋯
L(s)  = 1  − 1.18·2-s + 1.79·3-s + 0.397·4-s − 2.12·6-s − 1.16·7-s + 0.711·8-s + 2.22·9-s + 0.714·12-s − 0.937·13-s + 1.38·14-s − 1.23·16-s − 0.0251·17-s − 2.62·18-s + 0.465·19-s − 2.09·21-s − 0.465·23-s + 1.27·24-s + 1.10·26-s + 2.19·27-s − 0.464·28-s − 1.20·29-s − 1.63·31-s + 0.753·32-s + 0.0297·34-s + 0.884·36-s + 0.0548·37-s − 0.550·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3025\)    =    \(5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(24.1547\)
Root analytic conductor: \(4.91474\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3025,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 \)
good2 \( 1 + 1.67T + 2T^{2} \)
3 \( 1 - 3.10T + 3T^{2} \)
7 \( 1 + 3.08T + 7T^{2} \)
13 \( 1 + 3.37T + 13T^{2} \)
17 \( 1 + 0.103T + 17T^{2} \)
19 \( 1 - 2.03T + 19T^{2} \)
23 \( 1 + 2.23T + 23T^{2} \)
29 \( 1 + 6.49T + 29T^{2} \)
31 \( 1 + 9.07T + 31T^{2} \)
37 \( 1 - 0.333T + 37T^{2} \)
41 \( 1 - 3.93T + 41T^{2} \)
43 \( 1 + 7.39T + 43T^{2} \)
47 \( 1 + 6.62T + 47T^{2} \)
53 \( 1 + 0.310T + 53T^{2} \)
59 \( 1 - 11.2T + 59T^{2} \)
61 \( 1 + 3.39T + 61T^{2} \)
67 \( 1 + 12.8T + 67T^{2} \)
71 \( 1 + 2.66T + 71T^{2} \)
73 \( 1 - 7.48T + 73T^{2} \)
79 \( 1 - 2.41T + 79T^{2} \)
83 \( 1 + 0.143T + 83T^{2} \)
89 \( 1 - 13.9T + 89T^{2} \)
97 \( 1 + 5.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.504264733520784424988331101579, −7.67516312515927297501781685598, −7.36988758712233118483483137198, −6.55940570956492888778192192999, −5.17534355306151277318620919105, −4.03043342974590396149489373200, −3.37246114961825071825637814641, −2.43568652085518670332473638077, −1.62275125902487993888268717629, 0, 1.62275125902487993888268717629, 2.43568652085518670332473638077, 3.37246114961825071825637814641, 4.03043342974590396149489373200, 5.17534355306151277318620919105, 6.55940570956492888778192192999, 7.36988758712233118483483137198, 7.67516312515927297501781685598, 8.504264733520784424988331101579

Graph of the $Z$-function along the critical line