L(s) = 1 | + (0.642 + 1.26i)2-s + (−0.587 + 0.809i)4-s + (−1.39 + 0.221i)7-s + (−0.951 − 0.309i)9-s + (−1.26 + 0.642i)13-s + (−1.17 − 1.61i)14-s + (0.309 + 0.951i)16-s + (−1.26 − 0.642i)17-s + (−0.221 − 1.39i)18-s + (−1.61 − 1.17i)26-s + (0.642 − 1.26i)28-s + (−1 + 1.00i)32-s − 2.00i·34-s + (0.809 − 0.587i)36-s + (−1 − i)43-s + ⋯ |
L(s) = 1 | + (0.642 + 1.26i)2-s + (−0.587 + 0.809i)4-s + (−1.39 + 0.221i)7-s + (−0.951 − 0.309i)9-s + (−1.26 + 0.642i)13-s + (−1.17 − 1.61i)14-s + (0.309 + 0.951i)16-s + (−1.26 − 0.642i)17-s + (−0.221 − 1.39i)18-s + (−1.61 − 1.17i)26-s + (0.642 − 1.26i)28-s + (−1 + 1.00i)32-s − 2.00i·34-s + (0.809 − 0.587i)36-s + (−1 − i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.399 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.399 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3373002104\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3373002104\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.642 - 1.26i)T + (-0.587 + 0.809i)T^{2} \) |
| 3 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 7 | \( 1 + (1.39 - 0.221i)T + (0.951 - 0.309i)T^{2} \) |
| 13 | \( 1 + (1.26 - 0.642i)T + (0.587 - 0.809i)T^{2} \) |
| 17 | \( 1 + (1.26 + 0.642i)T + (0.587 + 0.809i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 41 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + (1 + i)T + iT^{2} \) |
| 47 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 53 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 59 | \( 1 + (1.17 - 1.61i)T + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + (0.618 + 1.90i)T + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.221 - 1.39i)T + (-0.951 + 0.309i)T^{2} \) |
| 79 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.642 - 1.26i)T + (-0.587 - 0.809i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.165450820803842473172931510246, −8.670535336021774646294537287370, −7.60429551757672113892104912689, −6.87243845272856433136354966549, −6.50409881714103014519174346134, −5.74371404178640591637540101704, −4.99167220424693416281115324922, −4.19175377742996514270301260908, −3.16858065542030548570397756231, −2.29395783949031322591707468864,
0.14815989842318793156768181284, 1.95396150661223116785267095943, 2.85301506212414657086195051423, 3.27107954638736288482267864774, 4.31778832530003591221835543417, 5.04808804802071056446953520760, 5.97284361847846676273050589678, 6.75850226630029728097478131482, 7.64031668209273804601562270473, 8.543356926764619306937316478289