L(s) = 1 | + (0.300 − 0.520i)5-s + (−0.5 − 0.866i)7-s + (0.800 + 1.38i)11-s + (−0.165 + 0.286i)13-s + 1.44·17-s − 2.57·19-s + (−0.924 + 1.60i)23-s + (2.31 + 4.01i)25-s + (1.75 + 3.04i)29-s + (−4.81 + 8.33i)31-s − 0.600·35-s + 0.600·37-s + (3.31 − 5.73i)41-s + (1.81 + 3.14i)43-s + (−1.95 − 3.38i)47-s + ⋯ |
L(s) = 1 | + (0.134 − 0.232i)5-s + (−0.188 − 0.327i)7-s + (0.241 + 0.417i)11-s + (−0.0458 + 0.0793i)13-s + 0.351·17-s − 0.591·19-s + (−0.192 + 0.333i)23-s + (0.463 + 0.803i)25-s + (0.326 + 0.565i)29-s + (−0.863 + 1.49i)31-s − 0.101·35-s + 0.0987·37-s + (0.516 − 0.895i)41-s + (0.276 + 0.479i)43-s + (−0.285 − 0.493i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.686 - 0.726i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.686 - 0.726i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.632655791\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.632655791\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
good | 5 | \( 1 + (-0.300 + 0.520i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.800 - 1.38i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.165 - 0.286i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 1.44T + 17T^{2} \) |
| 19 | \( 1 + 2.57T + 19T^{2} \) |
| 23 | \( 1 + (0.924 - 1.60i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.75 - 3.04i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.81 - 8.33i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 0.600T + 37T^{2} \) |
| 41 | \( 1 + (-3.31 + 5.73i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.81 - 3.14i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.95 + 3.38i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 9.27T + 53T^{2} \) |
| 59 | \( 1 + (-6.93 + 12.0i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.59 - 4.49i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.90 - 10.2i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.17T + 71T^{2} \) |
| 73 | \( 1 - 4.13T + 73T^{2} \) |
| 79 | \( 1 + (-4.06 - 7.04i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.78 - 4.83i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 3.83T + 89T^{2} \) |
| 97 | \( 1 + (-0.974 - 1.68i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.892596662139224429130597811022, −8.120894730248112530526752816999, −7.13448589745513693827097032716, −6.78491012403317602356731485696, −5.65692671646363903426138422452, −5.03807756662903995009808695981, −4.05976273649236523288124540529, −3.31341875190398399814795481868, −2.12201334900233135896083199526, −1.07267093840228267993026118255,
0.58560841705053492336758568031, 2.07112994220007601852262094043, 2.87439146887436528678278164299, 3.90013848681340294555886475379, 4.67481309907706848567715027057, 5.83902807465235604717133299478, 6.16752046918286805527832265742, 7.11658074155615669398863657002, 7.931367962072400828018550817862, 8.628900704132766548508420104526