L(s) = 1 | + (−1.15 + 2.00i)5-s + (−0.5 − 0.866i)7-s + (−0.655 − 1.13i)11-s + (1.93 − 3.34i)13-s + 0.326·17-s − 3.08·19-s + (−1.81 + 3.15i)23-s + (−0.169 − 0.293i)25-s + (4.75 + 8.22i)29-s + (3.24 − 5.62i)31-s + 2.31·35-s − 2.31·37-s + (−4.74 + 8.22i)41-s + (0.0493 + 0.0855i)43-s + (−0.108 − 0.187i)47-s + ⋯ |
L(s) = 1 | + (−0.516 + 0.894i)5-s + (−0.188 − 0.327i)7-s + (−0.197 − 0.342i)11-s + (0.536 − 0.928i)13-s + 0.0792·17-s − 0.707·19-s + (−0.379 + 0.656i)23-s + (−0.0338 − 0.0586i)25-s + (0.882 + 1.52i)29-s + (0.583 − 1.01i)31-s + 0.390·35-s − 0.379·37-s + (−0.741 + 1.28i)41-s + (0.00753 + 0.0130i)43-s + (−0.0158 − 0.0273i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.839 - 0.542i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.839 - 0.542i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6046355090\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6046355090\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
good | 5 | \( 1 + (1.15 - 2.00i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.655 + 1.13i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.93 + 3.34i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 0.326T + 17T^{2} \) |
| 19 | \( 1 + 3.08T + 19T^{2} \) |
| 23 | \( 1 + (1.81 - 3.15i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.75 - 8.22i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.24 + 5.62i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 2.31T + 37T^{2} \) |
| 41 | \( 1 + (4.74 - 8.22i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.0493 - 0.0855i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.108 + 0.187i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 13.7T + 53T^{2} \) |
| 59 | \( 1 + (-1.22 + 2.12i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.68 - 13.3i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.93 - 5.08i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.77T + 71T^{2} \) |
| 73 | \( 1 + 5.99T + 73T^{2} \) |
| 79 | \( 1 + (7.29 + 12.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.04 - 5.26i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 5.52T + 89T^{2} \) |
| 97 | \( 1 + (-2.99 - 5.18i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.886014440223763474495168846067, −8.173079871583188259220750683831, −7.57437411788711105227273495372, −6.76129813144545387380342360651, −6.14324303342497493787914254697, −5.23714276245404677874957894883, −4.20432650139539775949758505938, −3.32144030920750393490579773172, −2.82127141685893433827236661382, −1.29862791247995905687933834215,
0.19730834415011534258779813436, 1.57637790830242295760224577436, 2.61172935317712770268397436363, 3.85287097643391285984138407141, 4.48872607173106371294924727933, 5.17207455122000540383263153564, 6.29733847928780137723011544664, 6.74333112481960022274927815198, 7.921845367188137718967669864673, 8.444564205651587230578152332914