| L(s) = 1 | + (1.23 − 2.13i)5-s + (−0.5 − 0.866i)7-s + (−2.32 − 4.02i)11-s + (−3.55 + 6.15i)13-s + 4.51·17-s − 4.32·19-s + (−2.93 + 5.08i)23-s + (−0.527 − 0.912i)25-s + (−3.48 − 6.04i)29-s + (−3.69 + 6.39i)31-s − 2.46·35-s − 0.726·37-s + (0.136 − 0.236i)41-s + (−2.41 − 4.18i)43-s + (−1.83 − 3.18i)47-s + ⋯ |
| L(s) = 1 | + (0.550 − 0.952i)5-s + (−0.188 − 0.327i)7-s + (−0.700 − 1.21i)11-s + (−0.985 + 1.70i)13-s + 1.09·17-s − 0.992·19-s + (−0.611 + 1.05i)23-s + (−0.105 − 0.182i)25-s + (−0.647 − 1.12i)29-s + (−0.662 + 1.14i)31-s − 0.415·35-s − 0.119·37-s + (0.0213 − 0.0369i)41-s + (−0.368 − 0.638i)43-s + (−0.267 − 0.463i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.607 - 0.794i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.607 - 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.2647329511\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2647329511\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| good | 5 | \( 1 + (-1.23 + 2.13i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.32 + 4.02i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (3.55 - 6.15i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 4.51T + 17T^{2} \) |
| 19 | \( 1 + 4.32T + 19T^{2} \) |
| 23 | \( 1 + (2.93 - 5.08i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.48 + 6.04i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.69 - 6.39i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 0.726T + 37T^{2} \) |
| 41 | \( 1 + (-0.136 + 0.236i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.41 + 4.18i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.83 + 3.18i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 5.05T + 53T^{2} \) |
| 59 | \( 1 + (4.56 - 7.90i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.90 - 11.9i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.663 - 1.14i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 13.5T + 71T^{2} \) |
| 73 | \( 1 + 4.32T + 73T^{2} \) |
| 79 | \( 1 + (-3.21 - 5.57i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.742 + 1.28i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 9.83T + 89T^{2} \) |
| 97 | \( 1 + (-0.246 - 0.426i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.016910258928424303580711814544, −8.343266966271059273494864531699, −7.52723493637594909994205662826, −6.73404383960902498845380438145, −5.74625748233041512131205476119, −5.29570317442192403352244746394, −4.33534996739385558363689224654, −3.51756582843446544938489524001, −2.28056531545647835145056872750, −1.36092471068714041722190054377,
0.07703309323769526066293749891, 2.01637869856489855829989560073, 2.64151666004063412786011658146, 3.44139948088772122480365129184, 4.74885580426786280591138429617, 5.40587280562642887970046517966, 6.19171641373999061706259424491, 6.95517671439638668460136017319, 7.76770042319494897497644646729, 8.180353208158076537078661002565