L(s) = 1 | + 4.19·5-s + (−1.67 + 2.05i)7-s − 1.66i·11-s + (5.64 + 3.25i)13-s + (−1.45 + 2.52i)17-s + (2.39 − 1.38i)19-s − 2.21i·23-s + 12.6·25-s + (−5.69 + 3.28i)29-s + (−0.414 + 0.239i)31-s + (−7.01 + 8.60i)35-s + (−0.378 − 0.655i)37-s + (0.769 − 1.33i)41-s + (4.79 + 8.31i)43-s + (4.05 − 7.02i)47-s + ⋯ |
L(s) = 1 | + 1.87·5-s + (−0.631 + 0.775i)7-s − 0.503i·11-s + (1.56 + 0.903i)13-s + (−0.353 + 0.611i)17-s + (0.549 − 0.317i)19-s − 0.462i·23-s + 2.52·25-s + (−1.05 + 0.610i)29-s + (−0.0743 + 0.0429i)31-s + (−1.18 + 1.45i)35-s + (−0.0621 − 0.107i)37-s + (0.120 − 0.208i)41-s + (0.731 + 1.26i)43-s + (0.592 − 1.02i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.784 - 0.620i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.784 - 0.620i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.708364563\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.708364563\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.67 - 2.05i)T \) |
good | 5 | \( 1 - 4.19T + 5T^{2} \) |
| 11 | \( 1 + 1.66iT - 11T^{2} \) |
| 13 | \( 1 + (-5.64 - 3.25i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.45 - 2.52i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.39 + 1.38i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 2.21iT - 23T^{2} \) |
| 29 | \( 1 + (5.69 - 3.28i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.414 - 0.239i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.378 + 0.655i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.769 + 1.33i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.79 - 8.31i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.05 + 7.02i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (7.11 + 4.10i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.426 - 0.739i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.89 - 2.25i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.69 - 13.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 1.89iT - 71T^{2} \) |
| 73 | \( 1 + (6.22 + 3.59i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.52 - 9.57i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.162 - 0.280i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.86 - 4.95i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.22 + 2.44i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.906161520336742465632900944911, −8.454961226861335013131005627174, −6.94249468391711701728502259247, −6.38104862539434411153070780228, −5.81631373121001086496833114989, −5.31881569280237470607360078070, −4.01755106015452840303111024379, −3.00857540009163892275669885886, −2.12624527508441894252162452003, −1.29014499316218762240556934903,
0.929828842417082119139616752310, 1.87465263522720269813751808924, 2.94246330568907598754636148221, 3.78308804447526878495371543954, 4.93953578807285500928226903855, 5.84595533246114528816509308720, 6.13223095296470584872806358089, 7.05172593548391588504877345055, 7.79645116828022371019518549150, 8.930298649362865248156079965095