L(s) = 1 | + 3.60·5-s + (−0.415 − 2.61i)7-s + 4.96i·11-s + (0.167 + 0.0966i)13-s + (0.257 − 0.446i)17-s + (−1.69 + 0.979i)19-s + 5.49i·23-s + 8.01·25-s + (6.81 − 3.93i)29-s + (−2.78 + 1.60i)31-s + (−1.49 − 9.42i)35-s + (4.09 + 7.10i)37-s + (−3.39 + 5.88i)41-s + (5.07 + 8.78i)43-s + (5.78 − 10.0i)47-s + ⋯ |
L(s) = 1 | + 1.61·5-s + (−0.157 − 0.987i)7-s + 1.49i·11-s + (0.0464 + 0.0267i)13-s + (0.0625 − 0.108i)17-s + (−0.389 + 0.224i)19-s + 1.14i·23-s + 1.60·25-s + (1.26 − 0.730i)29-s + (−0.500 + 0.289i)31-s + (−0.253 − 1.59i)35-s + (0.673 + 1.16i)37-s + (−0.530 + 0.918i)41-s + (0.773 + 1.33i)43-s + (0.843 − 1.46i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 - 0.386i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.922 - 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.528174283\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.528174283\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.415 + 2.61i)T \) |
good | 5 | \( 1 - 3.60T + 5T^{2} \) |
| 11 | \( 1 - 4.96iT - 11T^{2} \) |
| 13 | \( 1 + (-0.167 - 0.0966i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.257 + 0.446i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.69 - 0.979i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 5.49iT - 23T^{2} \) |
| 29 | \( 1 + (-6.81 + 3.93i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.78 - 1.60i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.09 - 7.10i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.39 - 5.88i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.07 - 8.78i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.78 + 10.0i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.88 - 3.97i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.80 - 8.32i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.599 - 0.346i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.26 + 2.18i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 13.8iT - 71T^{2} \) |
| 73 | \( 1 + (-5.49 - 3.17i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.99 + 6.91i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (4.86 + 8.42i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (4.42 + 7.65i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (2.49 - 1.43i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.980947459214486265513658635711, −7.909666791778796491773033867597, −7.15447131994541710944699012610, −6.51625571328370915359369297379, −5.81036768224804682350793319810, −4.86372404686385023154114592598, −4.24179061043417711719532926055, −2.98688020143827785615006053930, −2.01024752591436904849692809256, −1.21160731678265253740012689894,
0.867400306657435036998163915029, 2.25982229830537649968392747331, 2.66776321903586846422621924513, 3.85892961118360901488630059574, 5.19194781060989275085691202245, 5.65581651516688478283623454798, 6.24531268474068787090497013487, 6.88405416365987082169315417990, 8.244849991666878322457064630264, 8.828746807835737335845283213435