L(s) = 1 | + 2.22·5-s + (2.45 + 0.996i)7-s + 1.17i·11-s + (3.12 + 1.80i)13-s + (3.71 − 6.42i)17-s + (3.05 − 1.76i)19-s − 5.81i·23-s − 0.0674·25-s + (6.04 − 3.48i)29-s + (−6.88 + 3.97i)31-s + (5.44 + 2.21i)35-s + (−5.54 − 9.60i)37-s + (0.809 − 1.40i)41-s + (−0.904 − 1.56i)43-s + (−4.26 + 7.38i)47-s + ⋯ |
L(s) = 1 | + 0.993·5-s + (0.926 + 0.376i)7-s + 0.353i·11-s + (0.866 + 0.500i)13-s + (0.900 − 1.55i)17-s + (0.700 − 0.404i)19-s − 1.21i·23-s − 0.0134·25-s + (1.12 − 0.648i)29-s + (−1.23 + 0.713i)31-s + (0.920 + 0.374i)35-s + (−0.911 − 1.57i)37-s + (0.126 − 0.218i)41-s + (−0.137 − 0.238i)43-s + (−0.622 + 1.07i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.170i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.985 + 0.170i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.795531716\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.795531716\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.45 - 0.996i)T \) |
good | 5 | \( 1 - 2.22T + 5T^{2} \) |
| 11 | \( 1 - 1.17iT - 11T^{2} \) |
| 13 | \( 1 + (-3.12 - 1.80i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.71 + 6.42i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.05 + 1.76i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 5.81iT - 23T^{2} \) |
| 29 | \( 1 + (-6.04 + 3.48i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (6.88 - 3.97i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (5.54 + 9.60i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.809 + 1.40i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.904 + 1.56i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.26 - 7.38i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-9.62 - 5.55i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.00 + 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.09 + 4.09i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.96 - 8.59i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 3.67iT - 71T^{2} \) |
| 73 | \( 1 + (-6.92 - 3.99i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.25 - 3.91i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.390 + 0.677i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (1.75 + 3.03i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.49 - 2.01i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.945521519393453872291504560800, −7.942282588826034229890414647459, −7.20211894821487383172376280347, −6.40603371830995532459555005491, −5.47461653245459349431016539202, −5.07664472341080791770944605546, −4.07325244272853256335059952177, −2.83402100084977787948909666431, −2.04099387791307428993135154430, −1.03056095494188417604792433165,
1.28919902023570974303326764436, 1.74281265770877790555844388291, 3.25144076046984088851752435141, 3.86639093707775174442392987746, 5.16528924860453204687534592678, 5.62442558581537249218177009042, 6.30001311725548623109680012382, 7.32288522950317289378970349226, 8.167933032676389855419161348221, 8.522989075305884110544382628645