L(s) = 1 | + 0.623·5-s + (0.996 − 2.45i)7-s + 5.19i·11-s + (−2.74 − 1.58i)13-s + (−0.437 + 0.757i)17-s + (1.41 − 0.819i)19-s + 8.25i·23-s − 4.61·25-s + (−4.96 + 2.86i)29-s + (−4.02 + 2.32i)31-s + (0.621 − 1.52i)35-s + (1.24 + 2.15i)37-s + (3.52 − 6.10i)41-s + (1.56 + 2.70i)43-s + (−4.73 + 8.19i)47-s + ⋯ |
L(s) = 1 | + 0.278·5-s + (0.376 − 0.926i)7-s + 1.56i·11-s + (−0.760 − 0.438i)13-s + (−0.106 + 0.183i)17-s + (0.325 − 0.187i)19-s + 1.72i·23-s − 0.922·25-s + (−0.921 + 0.532i)29-s + (−0.722 + 0.417i)31-s + (0.105 − 0.258i)35-s + (0.204 + 0.353i)37-s + (0.550 − 0.953i)41-s + (0.238 + 0.413i)43-s + (−0.690 + 1.19i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.205 - 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.205 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.188259488\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.188259488\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.996 + 2.45i)T \) |
good | 5 | \( 1 - 0.623T + 5T^{2} \) |
| 11 | \( 1 - 5.19iT - 11T^{2} \) |
| 13 | \( 1 + (2.74 + 1.58i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.437 - 0.757i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.41 + 0.819i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 8.25iT - 23T^{2} \) |
| 29 | \( 1 + (4.96 - 2.86i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.02 - 2.32i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.24 - 2.15i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.52 + 6.10i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.56 - 2.70i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.73 - 8.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.15 - 0.665i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.18 + 5.51i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.65 - 5.57i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.04 - 10.4i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 10.5iT - 71T^{2} \) |
| 73 | \( 1 + (11.6 + 6.73i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.84 + 8.39i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.192 + 0.332i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (0.0198 + 0.0344i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.94 + 3.43i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.135797154070738448420651715253, −7.894967470506104098274318232233, −7.39667519857186188190654670915, −6.99978292660947111318270561787, −5.74856298315319014543099691073, −5.07471091496886258207726388216, −4.28281639474847742027862669346, −3.46222139994211299652193832107, −2.18526830353427181210008828577, −1.37654401228583343410155115719,
0.35711884030762115996719728707, 1.94131216311834256563512322580, 2.66218978186004823922944429609, 3.70904263306742733098385537186, 4.71154137217642026197350061655, 5.61302974954562489331429993793, 6.02966770714595169202271512820, 6.95282335879029710717263448201, 7.984735581549517609702732907058, 8.451032803998869319504728326617