L(s) = 1 | + 0.542·5-s + (2.62 − 0.340i)7-s + 0.769i·11-s + (2.96 + 1.71i)13-s + (−3.23 + 5.60i)17-s + (−5.60 + 3.23i)19-s + 0.115i·23-s − 4.70·25-s + (−4.40 + 2.54i)29-s + (−4.01 + 2.31i)31-s + (1.42 − 0.184i)35-s + (5.47 + 9.48i)37-s + (−4.04 + 7.00i)41-s + (−3.32 − 5.76i)43-s + (0.773 − 1.33i)47-s + ⋯ |
L(s) = 1 | + 0.242·5-s + (0.991 − 0.128i)7-s + 0.231i·11-s + (0.822 + 0.474i)13-s + (−0.784 + 1.35i)17-s + (−1.28 + 0.742i)19-s + 0.0241i·23-s − 0.941·25-s + (−0.817 + 0.471i)29-s + (−0.720 + 0.416i)31-s + (0.240 − 0.0311i)35-s + (0.900 + 1.55i)37-s + (−0.631 + 1.09i)41-s + (−0.507 − 0.878i)43-s + (0.112 − 0.195i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.491647704\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.491647704\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.62 + 0.340i)T \) |
good | 5 | \( 1 - 0.542T + 5T^{2} \) |
| 11 | \( 1 - 0.769iT - 11T^{2} \) |
| 13 | \( 1 + (-2.96 - 1.71i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (3.23 - 5.60i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (5.60 - 3.23i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 0.115iT - 23T^{2} \) |
| 29 | \( 1 + (4.40 - 2.54i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.01 - 2.31i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.47 - 9.48i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.04 - 7.00i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.32 + 5.76i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.773 + 1.33i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.221 + 0.127i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.12 + 8.86i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.83 - 2.78i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.64 + 2.84i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.67iT - 71T^{2} \) |
| 73 | \( 1 + (5.35 + 3.09i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.01 + 3.48i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.80 - 10.0i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.00 + 3.47i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (15.0 - 8.69i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.657485431565526603500403658963, −8.374149335367103421479642232331, −7.56034427193896066865194220127, −6.49378492099171742129320410208, −6.07033843597624239210357140440, −5.02478724040043679359048295654, −4.22402157501359283405211575703, −3.57464938542447342234642730038, −1.97052427902082224801437067497, −1.61089950483522323477197101167,
0.43467798720676333132200593639, 1.86690204355000802282623232215, 2.59760854260407208907345850809, 3.89272924156488476437333547843, 4.57411863496607325434194567304, 5.51895815370001045956178621495, 6.07466574123834641502532715697, 7.12477597471001521968420617418, 7.73190979125104795736112054801, 8.639159687272362328092868888262