L(s) = 1 | − 2.20·5-s + (−2.16 + 1.52i)7-s + 0.181i·11-s + (2.50 − 1.44i)13-s + (−1.98 − 3.43i)17-s + (−0.867 − 0.500i)19-s − 5.61i·23-s − 0.121·25-s + (−0.703 − 0.406i)29-s + (6.89 + 3.98i)31-s + (4.78 − 3.35i)35-s + (1.25 − 2.17i)37-s + (0.612 + 1.06i)41-s + (−5.47 + 9.48i)43-s + (3.57 + 6.19i)47-s + ⋯ |
L(s) = 1 | − 0.987·5-s + (−0.818 + 0.574i)7-s + 0.0548i·11-s + (0.694 − 0.400i)13-s + (−0.481 − 0.833i)17-s + (−0.198 − 0.114i)19-s − 1.17i·23-s − 0.0242·25-s + (−0.130 − 0.0754i)29-s + (1.23 + 0.715i)31-s + (0.808 − 0.567i)35-s + (0.206 − 0.357i)37-s + (0.0957 + 0.165i)41-s + (−0.835 + 1.44i)43-s + (0.521 + 0.903i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.583 - 0.812i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.583 - 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9764473337\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9764473337\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.16 - 1.52i)T \) |
good | 5 | \( 1 + 2.20T + 5T^{2} \) |
| 11 | \( 1 - 0.181iT - 11T^{2} \) |
| 13 | \( 1 + (-2.50 + 1.44i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.98 + 3.43i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.867 + 0.500i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 5.61iT - 23T^{2} \) |
| 29 | \( 1 + (0.703 + 0.406i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-6.89 - 3.98i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.25 + 2.17i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.612 - 1.06i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.47 - 9.48i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.57 - 6.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.75 + 1.01i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.27 - 5.67i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.97 + 4.02i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.44 + 5.96i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 11.4iT - 71T^{2} \) |
| 73 | \( 1 + (10.1 - 5.88i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.35 - 11.0i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (7.19 - 12.4i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-7.11 + 12.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (3.01 + 1.73i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.619892179700953079655311036506, −8.285390767199443929443819430488, −7.30274733538263336421056280375, −6.57640410226512936531227399631, −5.93352817150214406236889095246, −4.85448887126264137304240865764, −4.12095777331257211208944330552, −3.17701743176154356361826739731, −2.49053564770919420298501951589, −0.795927124752326325546827456651,
0.44118344381431285046149198956, 1.83602139187722444549175275040, 3.24216229295953712847515865498, 3.84886790987139414587630427530, 4.42539105162523471196013380905, 5.68572282839974458614773027619, 6.42984563927230116496332041806, 7.12161941945181604642135253946, 7.86152785428672049014920741112, 8.541568013561318782421817429033