L(s) = 1 | + 2.84·5-s + (2.64 + 0.0704i)7-s + 2.45i·11-s + (−3.06 + 1.76i)13-s + (−2.91 − 5.05i)17-s + (2.90 + 1.67i)19-s + 8.01i·23-s + 3.10·25-s + (1.45 + 0.839i)29-s + (3.45 + 1.99i)31-s + (7.53 + 0.200i)35-s + (4.07 − 7.06i)37-s + (5.43 + 9.41i)41-s + (−3.27 + 5.67i)43-s + (3.31 + 5.74i)47-s + ⋯ |
L(s) = 1 | + 1.27·5-s + (0.999 + 0.0266i)7-s + 0.738i·11-s + (−0.848 + 0.490i)13-s + (−0.708 − 1.22i)17-s + (0.665 + 0.384i)19-s + 1.67i·23-s + 0.621·25-s + (0.269 + 0.155i)29-s + (0.620 + 0.357i)31-s + (1.27 + 0.0339i)35-s + (0.670 − 1.16i)37-s + (0.849 + 1.47i)41-s + (−0.499 + 0.865i)43-s + (0.483 + 0.837i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.742 - 0.669i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.742 - 0.669i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.573818332\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.573818332\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.64 - 0.0704i)T \) |
good | 5 | \( 1 - 2.84T + 5T^{2} \) |
| 11 | \( 1 - 2.45iT - 11T^{2} \) |
| 13 | \( 1 + (3.06 - 1.76i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.91 + 5.05i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.90 - 1.67i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 8.01iT - 23T^{2} \) |
| 29 | \( 1 + (-1.45 - 0.839i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.45 - 1.99i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.07 + 7.06i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.43 - 9.41i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.27 - 5.67i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.31 - 5.74i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (7.64 - 4.41i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.178 - 0.309i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.52 + 1.45i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.14 + 12.3i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 9.96iT - 71T^{2} \) |
| 73 | \( 1 + (-5.42 + 3.13i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.75 + 9.96i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.189 + 0.327i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-7.05 + 12.2i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (4.00 + 2.31i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.142185512708813488707472012886, −7.84443175453849738110078738738, −7.43308832553730080671309781454, −6.52893930836065111580011651199, −5.66185457687464634950584994752, −4.94188973142559669912369569493, −4.43232288856939568703526466513, −2.91922970228612048801151823555, −2.09556832369024257276946074993, −1.32548059901833207386146590800,
0.839935068911233984068866724181, 2.08113895965552766356018423141, 2.63568536867394581922051526756, 4.01586294614826246015756720844, 4.91977160419720760409581273234, 5.55035995359538890686765026489, 6.29160806051651422441039908452, 7.01815074517501130616246839576, 8.168579507071453189736845209412, 8.480401874324195988952070287431