L(s) = 1 | + 1.81·5-s + (−1.69 − 2.03i)7-s − 0.255i·11-s + (−5.77 + 3.33i)13-s + (1.99 + 3.46i)17-s + (−1.24 − 0.719i)19-s − 5.66i·23-s − 1.71·25-s + (4.18 + 2.41i)29-s + (8.80 + 5.08i)31-s + (−3.06 − 3.68i)35-s + (−1.65 + 2.86i)37-s + (5.10 + 8.83i)41-s + (−1.12 + 1.94i)43-s + (5.97 + 10.3i)47-s + ⋯ |
L(s) = 1 | + 0.810·5-s + (−0.639 − 0.768i)7-s − 0.0771i·11-s + (−1.60 + 0.925i)13-s + (0.484 + 0.839i)17-s + (−0.286 − 0.165i)19-s − 1.18i·23-s − 0.343·25-s + (0.777 + 0.448i)29-s + (1.58 + 0.913i)31-s + (−0.518 − 0.622i)35-s + (−0.272 + 0.471i)37-s + (0.796 + 1.37i)41-s + (−0.171 + 0.296i)43-s + (0.870 + 1.50i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 - 0.822i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.569 - 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.547557848\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.547557848\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.69 + 2.03i)T \) |
good | 5 | \( 1 - 1.81T + 5T^{2} \) |
| 11 | \( 1 + 0.255iT - 11T^{2} \) |
| 13 | \( 1 + (5.77 - 3.33i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.99 - 3.46i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.24 + 0.719i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 5.66iT - 23T^{2} \) |
| 29 | \( 1 + (-4.18 - 2.41i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-8.80 - 5.08i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.65 - 2.86i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.10 - 8.83i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.12 - 1.94i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.97 - 10.3i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.97 + 2.29i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.55 - 4.42i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-8.60 + 4.96i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.962 + 1.66i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 7.31iT - 71T^{2} \) |
| 73 | \( 1 + (2.47 - 1.43i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.83 + 3.17i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.68 + 4.64i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.378 + 0.655i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.21 - 2.43i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.910749293431126479647541878306, −8.095217476658020993853834533088, −7.19396900875344445340484928961, −6.53102891296475539412643391381, −6.02610340031068606940525935589, −4.77438713283120703532537848571, −4.35708725111576300812821696857, −3.07126273747012988148015656856, −2.30533422174531729545801812972, −1.08170676587439134707606168975,
0.52748463593140872382943053407, 2.24975658784872541279719310971, 2.63652004809259104986019442566, 3.76201927140073428771763192599, 5.02957008219580851415310482542, 5.53086558212277843955028816876, 6.17900175107971886663618694436, 7.17268967949803760812039948762, 7.75578622964996517030727084186, 8.736927108290848855157262950356