L(s) = 1 | + 1.05·5-s + (−1.79 + 1.94i)7-s + 6.24i·11-s + (−0.872 + 0.503i)13-s + (−3.26 − 5.66i)17-s + (−1.73 − 1.00i)19-s − 4.40i·23-s − 3.88·25-s + (−6.12 − 3.53i)29-s + (2.07 + 1.19i)31-s + (−1.89 + 2.04i)35-s + (−3.64 + 6.30i)37-s + (−1.80 − 3.11i)41-s + (−1.60 + 2.78i)43-s + (−1.87 − 3.23i)47-s + ⋯ |
L(s) = 1 | + 0.472·5-s + (−0.679 + 0.733i)7-s + 1.88i·11-s + (−0.241 + 0.139i)13-s + (−0.792 − 1.37i)17-s + (−0.397 − 0.229i)19-s − 0.917i·23-s − 0.777·25-s + (−1.13 − 0.657i)29-s + (0.372 + 0.214i)31-s + (−0.320 + 0.346i)35-s + (−0.598 + 1.03i)37-s + (−0.281 − 0.487i)41-s + (−0.244 + 0.424i)43-s + (−0.272 − 0.472i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.663 + 0.747i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.663 + 0.747i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2639963408\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2639963408\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.79 - 1.94i)T \) |
good | 5 | \( 1 - 1.05T + 5T^{2} \) |
| 11 | \( 1 - 6.24iT - 11T^{2} \) |
| 13 | \( 1 + (0.872 - 0.503i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3.26 + 5.66i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.73 + 1.00i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 4.40iT - 23T^{2} \) |
| 29 | \( 1 + (6.12 + 3.53i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.07 - 1.19i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.64 - 6.30i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.80 + 3.11i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.60 - 2.78i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.87 + 3.23i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.02 + 3.47i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.67 + 11.5i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.10 + 4.10i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.0613 + 0.106i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.37iT - 71T^{2} \) |
| 73 | \( 1 + (-14.4 + 8.33i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4.43 + 7.67i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.07 - 1.86i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.23 + 3.86i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.960 - 0.554i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.595886602754430247530176561658, −7.58984138327813917307600879325, −6.77273434328368280781988529178, −6.41959578587468300240717081007, −5.18079152758188760158224424837, −4.77188524866854177409605299400, −3.67220069034663077316443838138, −2.33659528799906281643296330322, −2.10978417344305227731235009584, −0.079466137916587433976292748686,
1.26965220783980097790750930107, 2.48135073210252090246872494308, 3.66971503189382025833923980483, 3.93302501699614925505421123008, 5.48263223456471962019162833437, 5.89609769238667154691019833023, 6.64251296477630120200163440974, 7.47403167532338534161339515908, 8.380267001375464836692738295280, 8.900106040466673011712415534112