L(s) = 1 | + (2.08 + 1.20i)5-s + (−2.53 + 0.763i)7-s + (−2.81 + 1.62i)11-s + (4.35 − 2.51i)13-s + (−0.795 − 0.459i)17-s + (−3.22 − 5.57i)19-s + (−5.31 − 3.06i)23-s + (0.399 + 0.691i)25-s + (−1.22 + 2.12i)29-s − 3.21·31-s + (−6.20 − 1.45i)35-s + (−4.08 − 7.07i)37-s + (−10.3 + 5.99i)41-s + (10.2 + 5.89i)43-s + 4.84·47-s + ⋯ |
L(s) = 1 | + (0.932 + 0.538i)5-s + (−0.957 + 0.288i)7-s + (−0.847 + 0.489i)11-s + (1.20 − 0.698i)13-s + (−0.192 − 0.111i)17-s + (−0.739 − 1.28i)19-s + (−1.10 − 0.640i)23-s + (0.0798 + 0.138i)25-s + (−0.228 + 0.394i)29-s − 0.578·31-s + (−1.04 − 0.246i)35-s + (−0.671 − 1.16i)37-s + (−1.62 + 0.936i)41-s + (1.55 + 0.899i)43-s + 0.706·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.462 + 0.886i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.462 + 0.886i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7136378350\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7136378350\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.53 - 0.763i)T \) |
good | 5 | \( 1 + (-2.08 - 1.20i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.81 - 1.62i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.35 + 2.51i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (0.795 + 0.459i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.22 + 5.57i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (5.31 + 3.06i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.22 - 2.12i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 3.21T + 31T^{2} \) |
| 37 | \( 1 + (4.08 + 7.07i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (10.3 - 5.99i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-10.2 - 5.89i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 4.84T + 47T^{2} \) |
| 53 | \( 1 + (-1.56 + 2.71i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 9.86T + 59T^{2} \) |
| 61 | \( 1 + 9.49iT - 61T^{2} \) |
| 67 | \( 1 + 0.359iT - 67T^{2} \) |
| 71 | \( 1 + 2.32iT - 71T^{2} \) |
| 73 | \( 1 + (4.01 + 2.31i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 4.36iT - 79T^{2} \) |
| 83 | \( 1 + (-8.68 + 15.0i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-9.68 + 5.59i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (9.79 + 5.65i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.614511194353622689357531432900, −7.68911859935093007926344777705, −6.77966052976195571438239374963, −6.18754524469685788934258120499, −5.65418230749416675833772011905, −4.64304464804564943927593762473, −3.51584486460922908900209796215, −2.68596413969030747469640615182, −1.97069313557448415785698011797, −0.20717732777249445587297228023,
1.38632076658355597144409114250, 2.26386839763927442300917229598, 3.55920298519177901839303947064, 4.07457217926585784914235419615, 5.43772303998995424040385211597, 5.89456721617447431191494359533, 6.48049793854220851904947389183, 7.48419352412763778774165121233, 8.394535954832268198314287664312, 8.959066591028472090389125991348