L(s) = 1 | + (2.10 + 1.21i)5-s + (0.347 − 2.62i)7-s + (−3.88 + 2.24i)11-s + (0.395 − 0.228i)13-s + (1.45 + 0.839i)17-s + (−3.17 − 5.50i)19-s + (−3.03 − 1.75i)23-s + (0.456 + 0.791i)25-s + (1.38 − 2.39i)29-s + 8.92·31-s + (3.92 − 5.10i)35-s + (0.463 + 0.802i)37-s + (9.08 − 5.24i)41-s + (−8.87 − 5.12i)43-s + 8.39·47-s + ⋯ |
L(s) = 1 | + (0.941 + 0.543i)5-s + (0.131 − 0.991i)7-s + (−1.17 + 0.676i)11-s + (0.109 − 0.0633i)13-s + (0.352 + 0.203i)17-s + (−0.728 − 1.26i)19-s + (−0.633 − 0.365i)23-s + (0.0913 + 0.158i)25-s + (0.256 − 0.444i)29-s + 1.60·31-s + (0.662 − 0.862i)35-s + (0.0762 + 0.132i)37-s + (1.41 − 0.818i)41-s + (−1.35 − 0.781i)43-s + 1.22·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.464 + 0.885i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.464 + 0.885i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.823260954\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.823260954\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.347 + 2.62i)T \) |
good | 5 | \( 1 + (-2.10 - 1.21i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (3.88 - 2.24i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.395 + 0.228i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.45 - 0.839i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.17 + 5.50i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.03 + 1.75i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.38 + 2.39i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 8.92T + 31T^{2} \) |
| 37 | \( 1 + (-0.463 - 0.802i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-9.08 + 5.24i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (8.87 + 5.12i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 8.39T + 47T^{2} \) |
| 53 | \( 1 + (-4.91 + 8.52i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 6.45T + 59T^{2} \) |
| 61 | \( 1 + 5.31iT - 61T^{2} \) |
| 67 | \( 1 + 13.6iT - 67T^{2} \) |
| 71 | \( 1 + 1.59iT - 71T^{2} \) |
| 73 | \( 1 + (-9.31 - 5.38i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 10.3iT - 79T^{2} \) |
| 83 | \( 1 + (-0.657 + 1.13i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (13.5 - 7.80i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.69 + 3.28i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.436302350662345099927175967222, −7.86758368349399536787479417671, −6.93395246707830010410667051277, −6.50597373792995577504427845451, −5.52012761153438263139409345121, −4.72982149207254685988642849755, −3.92302957152042537278963016103, −2.64856997340015542390628317055, −2.11726645413096874196934869091, −0.58324382574443631587518119333,
1.22567952617443308939984114432, 2.28442969166119050629401744440, 2.99540929698933495507136605990, 4.28678794476609696449059373111, 5.23367954216346359191906731484, 5.83224621016853990956041310069, 6.18364720889659065591348721480, 7.53056483292198604906544066520, 8.343571453187259284643278919476, 8.657464739050168075653557424999