L(s) = 1 | + (−2.43 + 1.40i)5-s + (−0.717 − 2.54i)7-s + (−2.29 − 1.32i)11-s + (4.59 + 2.65i)13-s + (2.35 − 1.36i)17-s + (0.274 − 0.474i)19-s + (−1.98 + 1.14i)23-s + (1.45 − 2.51i)25-s + (3.72 + 6.45i)29-s + 2.76·31-s + (5.32 + 5.19i)35-s + (1.81 − 3.13i)37-s + (−7.12 − 4.11i)41-s + (−3.93 + 2.27i)43-s − 11.2·47-s + ⋯ |
L(s) = 1 | + (−1.08 + 0.628i)5-s + (−0.271 − 0.962i)7-s + (−0.690 − 0.398i)11-s + (1.27 + 0.735i)13-s + (0.571 − 0.329i)17-s + (0.0628 − 0.108i)19-s + (−0.413 + 0.238i)23-s + (0.290 − 0.503i)25-s + (0.692 + 1.19i)29-s + 0.497·31-s + (0.900 + 0.877i)35-s + (0.298 − 0.516i)37-s + (−1.11 − 0.642i)41-s + (−0.600 + 0.346i)43-s − 1.63·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.716 + 0.697i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.716 + 0.697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4646555547\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4646555547\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.717 + 2.54i)T \) |
good | 5 | \( 1 + (2.43 - 1.40i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.29 + 1.32i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.59 - 2.65i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.35 + 1.36i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.274 + 0.474i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.98 - 1.14i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.72 - 6.45i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 2.76T + 31T^{2} \) |
| 37 | \( 1 + (-1.81 + 3.13i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (7.12 + 4.11i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.93 - 2.27i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 11.2T + 47T^{2} \) |
| 53 | \( 1 + (-2.53 - 4.38i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 3.35T + 59T^{2} \) |
| 61 | \( 1 + 14.4iT - 61T^{2} \) |
| 67 | \( 1 + 10.8iT - 67T^{2} \) |
| 71 | \( 1 + 12.7iT - 71T^{2} \) |
| 73 | \( 1 + (-4.29 + 2.47i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 5.61iT - 79T^{2} \) |
| 83 | \( 1 + (-0.719 - 1.24i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (3.24 + 1.87i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (15.7 - 9.09i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.092414996627766692678740500308, −7.88618269864081693181052350526, −6.81605661693353364072840435400, −6.52106404358757875047907882274, −5.29399077609032675675092949780, −4.36415787470673696403240270810, −3.48956198232114320169468273963, −3.15733626392976714106599872550, −1.49331542928699595576372638428, −0.16360219633305262118377147027,
1.20290281675010813144628475604, 2.60144458788819238257945414801, 3.46149878872756973258079051069, 4.30738049549329231342236759914, 5.18223045671667269722474919957, 5.89835278834385212765437403292, 6.68354152299891734350294756932, 7.86542285891648540606239611085, 8.310078996469048314089474126994, 8.604868965088810315252754422769