L(s) = 1 | + (1.5 − 0.866i)5-s + (−0.5 − 2.59i)7-s + (3 + 1.73i)11-s − 3.46i·17-s + 5·19-s + (4.5 − 2.59i)23-s + (−1 + 1.73i)25-s + (1 + 1.73i)31-s + (−3 − 3.46i)35-s − 8·37-s + (3 + 1.73i)43-s + (3 − 5.19i)47-s + (−6.5 + 2.59i)49-s + 6·53-s + 6·55-s + ⋯ |
L(s) = 1 | + (0.670 − 0.387i)5-s + (−0.188 − 0.981i)7-s + (0.904 + 0.522i)11-s − 0.840i·17-s + 1.14·19-s + (0.938 − 0.541i)23-s + (−0.200 + 0.346i)25-s + (0.179 + 0.311i)31-s + (−0.507 − 0.585i)35-s − 1.31·37-s + (0.457 + 0.264i)43-s + (0.437 − 0.757i)47-s + (−0.928 + 0.371i)49-s + 0.824·53-s + 0.809·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.513 + 0.858i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.513 + 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.243646802\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.243646802\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.5 + 2.59i)T \) |
good | 5 | \( 1 + (-1.5 + 0.866i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-3 - 1.73i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 3.46iT - 17T^{2} \) |
| 19 | \( 1 - 5T + 19T^{2} \) |
| 23 | \( 1 + (-4.5 + 2.59i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1 - 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 8T + 37T^{2} \) |
| 41 | \( 1 + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3 - 1.73i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3 + 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (-6 - 10.3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.5 + 0.866i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6 + 3.46i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.1iT - 71T^{2} \) |
| 73 | \( 1 + 6.92iT - 73T^{2} \) |
| 79 | \( 1 + (13.5 + 7.79i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 13.8iT - 89T^{2} \) |
| 97 | \( 1 + (-9 - 5.19i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.945683414829997404139062620914, −7.62727300640102502468228443353, −7.11708778832760975771970914981, −6.46888852627793628715580210773, −5.41586452223043522589856572743, −4.79280298185888414993607324861, −3.87213903421372306128615619943, −2.98869598822742395921994901111, −1.69632711241909373685847812205, −0.804519022058974511771790973598,
1.21627390020321927106706124083, 2.28261020180788154400970575992, 3.16715704163805757489604904340, 3.99631125450544176615577517898, 5.31794396289941992209222986347, 5.74455806487876971739317614612, 6.52383848153931433298619184336, 7.18141404813543867094103954358, 8.308027759290076081986289554446, 8.850403822183711076614661473496